3,6 (nare £ 5ens)

=

HENRIQUE MIYAMOTO
HUMBERTO NOMURA NISHIZAKI

ESTUDO E DESENVOLVIMENTO DE UM SIMULADOR CIRURGICO

Projeto de Formatura apresentado 2
Escola Politécnica da Universidade de
S&o Paulo para a obtengdo de titulo de
engenheiro mecinico com énfase em

automagao e sistemas

SAO PAULO
2001

Bervigo de Blbliotscas
Biblioteua Ce Euge huia Becdico, vl & Duednica



HENRIQUE MIYAMOTO
HUMBERTO NOMURA NISHIZAKI

ESTUDO E DESENVOLVIMENTO DE UM SIMULADOR CIRURGICO

Projeto de Formatura apresentado a
Escola Politécnica da Universidade de
Sdo Paulo para a obtenglio de titulo de
engenheiro mecénico com énfase em

automago e sistemas

Orientador:
Prof. Dr. Lucas A. Moscato

SAOQO PAULO
2001



As nossas familias, por todo apoio dado ao

longo de nossas vidas.



it

AGRADECIMENTOS

Aos amigos Rogério da Silva Santana, Reneu Luiz Andrioli Janior e Marcos Alexandre

Scholtz, pela ajuda no desenvolvimento do projeto.

Aos alunos de iniciagdio cientifica Erick Dario Leon Bueno de Camargo, Tito Coutinho

Melco e ao José Augusto Calvo Lonardoni, pelo trabalho prévio.

A todos aqueles que, direta ou indiretamente, ajudaram-nos no sucesso deste projeto.



1

RESUMO

Neste relatorio serd apresentada uma revisdo bibliografica do estado da arte na érea de manipuladores e
sistemas de realidade virtual aplicados na érea médica, ¢ o desenvolvimento de um sistema de simulacio
grifica de cirurgias minimamente invasivas. O trabalho foi dividido em duas partes, uma & o hardware,
que consiste de um apontador espacial com retorno de forgas ¢ todo seu sistema de controle, e a outra é o
software, que consiste do desenvolvimento dos médulos de controle, de simulagfo e grafico.



v

ABSTRACT

In this report, will be presented the state-of-art of handlers and virtual reality systems for medical
applications., and the development of a graphical simulation facility for minimally invasive surgeties. The
project was divided in two parts, one is the hardware, which consists of a handler with feedback system
and its control system, and the other is the software, which consists of the development of a control
module, a simulation module and a graphical module.



SUMARIO

SUMARIO ........oooovvoorseeemaeeeseeeesamiecssss et s v
LISTADE FIGURAS ...ttt ans e e et s e vii
LISTADE TABELAS ........ooiotiiriote ettt eeeearesmn e s e e nn beaa b ix
T INEFOQUGHD.......uevieeeeieiesieeiaaens et eeie e e st renraeaee e e e e sm e e aeensabess b e benanesanans 1
2 EStado daATFIE .....ocooiniiiicie e e e 2
2.1 HAFAWATE ........cooiiieeieieeierte ettt s e e s 2
211 PHANTOM Desktop— Dispositivo de captura de coordenadas em seis graus

de liberdade, com retorno de for¢a em trés graus de liberdade.....................c. 2
212 HapCMAaSTET ...t a e et 4
213 Mouse Espacial Desenvolvido pelo Departamento de Engenharia Mecatrénica
e Sistemas Mecinicos da EPUSP ...t 5
214 Placa de Aquisigio de dados CADI2/36............ooiviiiiiivciniicnncee e 8
2.2 SOFTWARE.... ...t st 9
221 GHOST® SDK .....ooviiioiioeie et eeeieeeeet et te e s se s sonse s s sm e eamene et s sbn s aans 9
222 FreeForm™ modeling SySTem...........ocooeiiiiiiriee e csimis e e 9
223 | 1 5 5. G U USRI 10
224 VRML...oooooioeieecee ettt ettt st 11
225 OPENGL ..o e e e e s 12
226 Open INVENTOT .......oovr i e 14
3 Projeto do Simulador CIMIrgICO.........cceiivieiiiiinicirienr et 16
4  Estudo de Viabilidade.............cccoooviriveeeii e 17
4.1  Escolha do Hardware e do Software ... 17
42  Detecgo de COLISAO........coviee it et s e 18
4.3  Célculo da interfer@neia...........cocorereeeriiiiiececis e e s 22
431 MEF (Método dos Elementos FInitos) ...........coooeeeeeiienenncesiiesis e 23
432 MDF ( Método das Diferengas FInitas)..............cccccooiiiiniiinniniii e 23
433 Modelagem por um Sistema de Molas em Série e em Paralelo................... 24
4.4 MoOdulos do SImulador...........cooeueeeiee i 25
4.4.1 DEVICE DTV .......oviieieeeeeree e ebe e sb b e rs et eet e sne e s 25

4,42 AUtonomy ENGING .........ccoooiiiiiiiiniiierr e e 26



vi

443 Modulo de CAlculo de FOTGAS ... ...cvivviveiecciiec it e 26
444 MOAUIO GIAFICO ..o eeee ettt eee st e s st s s 26
4.5  Controle doS MOTOTES ........coiviivieree e cceni e ee s b st 26
5 IMPIEMEIIAGHD. ....cverirececmaiseenteir ettt 28
5.1  Modelagem em Elementos fINitos ............ccoooiimi 28
52  Modelagem DINAMHCA .......cooviimuiimieiese sttt 34
521 Método do Desacoplamento das Barras ... 34
53  HARDWARE ..ot estevecen s enies e etk een e b i 36
5.3.1 Aquisigln dos Dados ..o 37
532 POLEIICIOMELIOS ....veveveeireereeeeeesteseterneesreeea s be b s e ere s e e sb e s s 38
533 MIOTOTES EIBITICOS ..ot eeviitieiieireseeeeemeeee e eamae e e et s s s sm e s asnce s n s b 39
534 CirCuito de POIBNCIA ....ooovveeei et e e e cs s s 40
535 MOUSE ESPACIAL .......oveviocemeiiiie et 41
B4 SOTIWATE....ooeeeoeeeeetiiii et eeeeas e s e e et e e e i e b sk st 42
54.1 Algoritmo de Detecgio de ChoqUES...........o e 42
542 Calculo das DeformagBes ... ..ccoeivverriorroiescereeiie e st eseis s 45
543 MOdulo de AQUISIGHD -.....oc.ovviieiiieeeeeec it 46
544 MOAUIO MAtEIMATICO ...t eeieeieeeeereeremeecresieesan e v easse ki nsss et s ans 49
5.4.5 MOdulo de SIMUIAGAO. ........ovieeerrreriecaetiime ettt 49
546 MOAUIO GEALICO .-ttt e et s e s 51
6 TOSUHAGOS. .. oottt a e e e 54
T COMCIUSBES .. eoeveeeeeeeeeeieite st s ereeuearesves b e st s b s s srm e bbb E oot 57
8 Manual dO USUATIO ........ivveveieece oottt s e 60
8.1 instalaciio Ao RArAWATE.........ccccovuervrriiiree et 60
8.2  instalagHo do SOTIWATE..........cooooivmiiiiiireic e 61
8.3  eXeCUCHD dO PrOZIATNA. .......ocooiiiiiieirie ettt 61
8.4  Comandos dO PrOZTAMA ........ccoocciiiiumirrninss s siet et 61
O BAbOGIAMIZ. ..o oottt 63



vii

LISTA DE FIGURAS
Figura 1 — O Phantom Desktop ..........c.covvveeeieiiieiininee et e 2
Figura 2 — O HapticMaster............coooiiiiiiiiiireiiee s s te e et eeac e et aee s b 4
Figura3 — Mouse eSPaCIAL ........cc.oeeeviieiireceiie et st s et een e 5

Figura 4 — Mouse espacial com retormo de forgas..........cooovvvccvnccinncccccccnnnnn 7
Figura 5 — Estruturabésica do LHX ............cocooii i e 10

Figura 6 — Volumes de envolvimento nos s6lidos .........cccoocvvveevevververrncceevniiieerecnnnn 19

Figura 7 — Modelo Massa-Mola independente..............ccccoverviiionnn i 22
Figura 8 — Malha com um sistema de molas.............ccccccvvvvvvvecce e 24
Figura 9 — Problema de descontinuidade namatha..................coooooon 25
Figura 10 - Integracio dos Sub-Sistemas..............occervvereeerireereereecie e et 247
Figura 11 — Coeficientes de Elasticidade da Pele...............c.oooomeeininiiice 29
Figura 12 - Modelo dapele em ANSYS ...t et 30
Figura 13 - Deformagfo para forga aplicada proximo aborda.............cocvivecinin 31

Figura 14 — TensGes de Von Mises na malha devido a forga aplicada préximo & borda31

Figura 15 - Deformagfio vista de perfil.............ccoovvveiiiiiniieic e e 32
Figura 16 - Deformagio devido a aplicagio de forga no ceniro damalha..................... 33
Figura 17 -Tens6es de Von Mises devido & forca aplicada no centro damalha............ 33
Figura 18 - Deformag8io vistade perfil ..., 34
Figura 19 - Vista lateral das hastes do manipulador .................cocceiniiiiiininnn e 35
Figura 20 — Representacéio da forga aplicada na haste de suporte ..........c.ocveee e 35
Figura 21 — Representagio do equilibrio de forgas na haste daponta........................... 36
Figura 22 - Potenciémetro 1 Tens@io versus Angulo ...........ccococovviverieereereneeeeens 38
Figura 23 — Potenciémetro 2 Tens3o versus Angulo............coooveeeovreeerveecereereesceseenne 38
Figura 24 — Potenciémetro 3 Tensdo versus Angulo...............ocoooivioimneccecveieiieiensnn, 39
Figura 25 — Curva do motor 1 Torque versus Tensdo ... 39
Figura 26 - Torque versus TensA0 ..ottt vere s eeanens 40
Figura 27 Circuito de POTENCIA................oco i 40
Figura 28 —Mouse espacial ..ot 41
Figura 29 — Algoritmo da detecgfio de choque........c....co e 42

Figura 30 — Ferramenta e 61gdo - antes do choque ... 44



viil

Figura 31 — Ferramenta e 0rg8o — ap6s o choque....................oooiiiiiiicieeen 44
Figura 32 — Fluxograma da fung@io Leitor ... 46
Figura 33 — Fluxograma da fing80 Lela.........cc..oovvvveiveeiiis e 47
Figura 34 - Fluxograma da fungfio Calibra..............cocoervvriireiiieicnie e 48
Figura 35 — Fluxograma da fungo Choque2..............cooooooiiiniii e 50
Figura 36 — Curva e superficie de Béziér e seus pontos de controle.................cccceeee. 52
Figura 37 — Deformagio da malha através de deformagfo direta.................c.occcevee, 53
Figura 38 — Simulador Cirlirgico — Vista Inicial...................cccocoiviienieniiicecie 54
Figura 39 — Deformacgio do 6rgo pelo contato com a ferramenta...............ccceeenne. 54
Figura 40 — Rotagio de CAMEera... ..., 55
Figura 41 — Rotagfo de CAMETA..........cc.ocviiiiiiiecie e eeie et et anr e v aeanaas 55

Figura 42 - Mouse com retorno de forgas.........cooveei i 56



x

LISTA DE TABELAS

Tabela I- Caracteristicas do Phantom

Tabela II - Pardmetros para o modelo

€M ATISVS ..ooveiiiiiieiiiee et ieeeteee e ee e s 28

Tabela III - Coeficientes de Elasticidade da Pele ..o 32



1 INTRODUCAO

As cirurgias podem ser classificadas em cirurgias invasivas ¢ minimamente
invasivas. As cirurgias invasivas sio as tradicionais, nas quais os cirurgides abrem
passagem através do tecido externo até a regifio de interesse, enquanto que as
minimamente invasivas sfio resultantes de novas técnicas, nas quais o cirurgido atinge a
regifio interna de interesse através de pequenas hastes, que contém um dispositivo
mecanico de pingas. Essas hastes sfio introduzidas no paciente por pequenas incisdes no
tecido externo. A visualizagio nesse caso ¢ feita através de uma cimera de video
inserida pelas hastes.

As cirurgias minimamente invasivas possuem as seguintes vantagens: minimos
traumas no organismo, baixos indices de infecges hospitalares e baixos cusios do pos-
operatério. Entretanto elas possuem algumas desvantagens, como as limitagBes
mecénicas dos instrumentos cirlirgicos disponiveis e a dificuldade de manuseio dos
mesmos. Por isso tais cirurgias necessitam de um maior treinamento e planejamento dos
procedimentos a serem realizados.

A melhor maneira para planejar os procedimentos seriz a realizagdo de ensaios.
Esses ensaios podem ser realizados tanto em modelos plasticos como em corpos mortos,
entretanto ambos possuem limita¢Ses na disponibilidade e na incapacidade de prever
todas as situagBes. Uma terceira solugo € a utilizagfio de simuladores controlados por
computador.

O simulador deve fomecer todas as informagdes que o cirurgifio necessita para
realizar o procedimento cirtrgico: a viséo e o taio. A vis#o é suprida pelas imagens da
cémera de video, que podem ser geradas pelo computador através da modelagem grafica
tridimensional do organismo do paciente; j4 a sensagiio de tato exige dispositivos com
retorno de forga na mio do usuario. Algoritmos implementados no simulador devem
captar os movimentos do cirurgidio e processé-las de forma a gerar imagens e sinais para
se gerar um retorno de forga no dispositivo de controle.

Para captar os movimentos e dar o retorno de for¢a utiliza-se dispositivos
conhecidos como “haptic devices™, que no presente projeto serdic denominados “mouses
espaciais”, que sdo dispositivos dotados de motores e sensores que captam o movimento

da mio do usudrio e a0 mesmo tempo podem gerar um retorno de forgas no dispositivo.



2 ESTADO DA ARTE

Devido a importincia citada anteriormente, a area de cirurgias minimamente
invasivas e treinamento em ambientes virtuais vem sendo intensamente pesquisada. E
possivel encontrar informagSes sobre o desenvolvimento de simuladores que
possibilitam a interagdo simultinea de dois ou mais usudrios, simuladores
especializados cirurgias especificas, mouses comerciais, software de interface.

Segundo as referéncias pesquisadas, os simuladores devem ter uma taxa de
atualizagfio grafica que varia entre 10 e 25 Hz, e uma taxa de atualizagfio de forga de no
minimo 40 ou 200 Hz, a taxa de amostragem minima para uma boa resposta de for¢a
deve ser de no minimo 200Hz Os dispositivos Phantom utilizam uma taxa de
amostragem entre 500 ¢ 1000 Hz.

2.1 HARDWARE

2.1.1 PHANTOM DESKTOP- DISPOSITIVO DE CAPTURA DE
COORDENADAS EM SEIS GRAUS DE LIBERDADE, COM RETORNO
DE FORCA EM TRES GRAUS DE LIBERDADE

Desenvolvidos no MIT e comercializados pela SensAble Technologies Inc., os
manipuladores espaciais PHANTOM™ fornecem dispositivos de captura de
coordenadas espaciais com ou sem retorno de forga. A seguir apresentam-se as

caracteristicas principais deste modelo:

Figura 1 — O Phantom Desktop



Caracteristicas bésicas:
Resolucio nominal 1100 dpi (0,02 mm)
Area de trabalho 16x13x 13 cm
Backdrive BOHOD T GG _———,,:s
For¢a maxima aplicavel 6,4 N
Forgaconnnuamenteaphcével(24h) 17N T T eoer, S e T E TR
Resisténcia a flexfio 3,16 Nf
Inércia (Massa aparente nos dedos) ~ <75g
Dimensoes dabase  18xl6éem
Retorno de forga 3 Graus de liberdade (%, v, z) :
Capturadeposiglo 6 Graus de liberdade (x, y, z, yaw, pitch, roll+
Tensio de enirada 90 -260V AC
‘Freqﬁénc.fa darede - 47 - 63 Hz

Correntedeemrada 2Aa115V AC
1A2a230VAC

Requisitos basicos de sistema PCs com CPU Intel:
Windows 2000 ou Windows NT 4.0
Pentium 300 MHz
64 Mb RAM
30 Mb livres em disco
Placa aceleradora grafica
Requisitos basicos de sistema (continuag#o) Silicon Graphics:
Octane com Irix 6.5
64 Mb RAM
30 Mb livres em disco

Placa aceleradora grafica

e e oxige

placa especial

Tabela I- Caracteristicas do Phantom



2,12 HAPTICMASTER

O HapticMaster é um manipulador de seis graus de liberdade que emprega um
mecanismo paralelo para aplicar as forgas de reagfio nos dedos do operador. A manopla
do manipulador é sustentada por trés conjuntos de pantografos.

A seguir est4 uma figura do equipamento:

Figura 2 — O HapticMaster

O sistema do HapticMaster utiliza trés conjuntos de pantografos ao invés de
mecanismos lineares. Cada pantdgrafo é acionado por trés motores DC, que s8o
energizados por amplificadores PWM. A ponta superior do paniografo é conectada a um
vértice do topo da plataforma por uma jungo esférica. Esse mecanismo tem as mesmas
vantagens de um mecanismo octaddrico, mas com esta configuracdo ela aumenta o
volume de trabatho e a backdrivability do manipulador paralelo.

A érea de trabalho do manipulador é um volume esférico de aproximadamente
40 cm. O angulo de cada jungio ¢ medida por potencibmetros. A carga maxima
aceitavel € de 2,5 kg.



2.1.3 MOUSE ESPACIAL DESENVOLVIDO PELO DEPARTAMENTO DE
ENGENHARIA MECATRONICA E SISTEMAS MECANICOS DA
EPUSP

Alunos de iniciagio cientifica do Departamento de Engenharia Mecatrénica da
EPUSP desenvolveram um dispositivo de interface entre o computador e a mio do
operador, chamada de “mouse espacial”. Trata-se de um dispositivo contendo uma base
fixa a uma mesa, trés bragos e trés articulacdes, resultando num dispositivo com trés
graus de liberdade na sua extremidade. Um quarto grau de liberdade pode ser
futuramente instalado na forma de uma pinga, que possibilitara a instalagio de um
acionador on-off ou abre-fecha, com o objetivo de simular com realismo a manipulacio
da ferramenta pelo usvario do simulador.

A seguir apresenta-se na figura 3 a configuragéio mecénica do mouse espacial

desenvolvido:

Haste 1

Potencidmetro 1

Figura 3 ~ Mouse espacial



Para que seja possivel saber a posigio da ponta do mouse espacial a cada
instante, trés potenciémetros foram instalados nas trés articulagdes do mouse espacial.
Estes potencidémetros geram um nivel de tensfo proporcional ao dngulo imposto neles,
de forma aproximadamente linear, fazendo com que seja possivel determinar a posigfo
da ponta do mouse espacial a partir de célculos geométricos simples.

Os potenciémetros foram escolhidos como sensores de posi¢do por seu baixo
custo e facilidade de instalagiio por seu tamanho compacto. Por outro lado, eles sdo
periféricos analdgicos, requerendo um hardware adicional, geralmente um conversor
anal6gico/digital para se conectar ao computador, além de serem dispositivos
mecanicos, portanto propensos a um desgaste mecénico que reduz sua vida il .

Para validar a linearidade dos potencidmetros foi feito um ensaio de suas curvas
de voltagem de saida versus deslocamento angular, no qual obteve-se um grau de
linearidade satisfatorio para o intervalo de deslocamento a ser utilizado.

A saida analégica dos potencidmetros ¢ ligada ao microcomputador através da
placa de aquisi¢io de dados CAD12/36 da Lynx, onde é convertida para um sinal digital
que pode ser utilizado para o processamento de sua posi¢do no espago e nos programas
de saida grafica.

Segundo informagdes apontadas no capitulo 2 — Estado da Arte, a taxa de
amostragem minima para se conseguir uma boa resposta de forga é de 200 Hz, taxa que
¢ possivel de ser atingida na placa CAD12/36, a ser descrita com maiores detalhes no

capitulo 2.1.4.



Haste de transmigsdo
do torque.

Polias péra redugdo do
torque.

Motores para
transmissdo
do torque.

Figura 4 — Mouse espacial com retorno de forgas

O torque & transmitido pelo seguinte método:

A forga que deve ser aplicada no mouse é transmitida, por um programa de
controle do sistema de “feedback™, aos motores;

Os motores transmitem um torque as polias motoras e estas, através das correias,
transmitem o torque (ampliado pela diferenca de raios das polias) as polias movidas;

As polias movidas transmitem o torque as hastes que, através de suas

articulag@es, transmitem a forca até a ponta da haste do operador.




2.14 PLACA DE AQUISICAO DE DADOS CAD12/36

A CADI2/36 ¢ uma placa de expansio que permite integrar o uso de

microcomputadores compativeis com a familia IBM PC ao meio ambiente externo. A

CADI12/36 faz o elo entre os micros e os diversos sinais que existem externamente,

sejam eles sinais analdgicos ou digitais. A CAD12/36 possui, basicamente, os seguintes

Tecursos:

Conversor analégico/digital (A/D), para leitura de sinais analégicos;
Entradas e saidas digitais que permitem a leitura e acionamento de
variaveis digitais;

Base de tempo interna e contadores, que permitem temporizar as
operagdes do sistema;

Expansfo para conexfio de subsistemas, geralmente conversores
Digitais/analégicos (D/A), que podem ser usados para produzir sinais

analégicos de estimulo, controle, set-point ou geragfio de formas de onda.

Caracteristicas gerais da placa CAD12/36:

Conversor A/D de 12 bits de resolugo;
16 entradas analdgicas simples ou 8 diferenciais multiplexadas;

Possibilidade de, com o auxilic de circuitos externos, realizar

amostragem simultinea de até 16 canais;
Suporte para interrupgdes;

Base de tempo interna (2,00 MHz), com 3 contadores ; temporizadores
de 16 bits;

Até 4 saidas analogicas ou outras expansdes;

16 entradas digitais;



* 16 saidas digitais;

¢ Sequéncia de leitura e ganhos programaveis através de meméria de
canais;

* Aquisi¢io em “burst” propiciada por buffer (FIFO) de 16 posi¢des;

e Suporte para DMA (Direct Memory Access ou Acesso Direto a
Memdria), permitindo a velocidade maxima de coleta de sinais

independentemente da velocidade da UCP (Unidade Central de

Processamento) do microcomputador.

2.2 SOFTWARE

Existem diversos softwares que permitem o desenvolvimento de simuladores ou
aplicagbes para dispositivos hépticos. Boa parte deles sugerem a utilizacio do padrio
OpenGL para as aplicagbes graficas.

2.2.1 GHOST® SDK

A prépria SensAble Technologies, inc. fornece solugdes em software para o
desenvolvimento de ferramentas que facilitam o desenvolvimento de aplicagBes tateis.
O GHOST® SDK (General Haptic Open Software Toolkit) é um sofiware desenvolvido
em C++ que facilita a tarefa de criar estas aplicagbes. Ele cuida de todo o aspecto
computacional para simular a fisica do tato, assim o usudrio sé precisa se preocupar
com as propriedades desejadas para os objetos, como localizagdo, massa, coeficiente de
atrito e resisténcia. Equipes de desenvolvimento podem criar e distribuir bibliotecas que

adaptam outras aplica¢des, incluindo solugdes médicas, de animag3o, projeto e CAD.

2.2.2 FREEFORM™ MODELING SYSTEM

Outro software da SensAble, este programa aproveita toda a capacidade de seus

apontadores espaciais. Esta ¢ a primeira ferramenta que permite aos escultores e



10

designers usarem seu senso t4til para modelar formas tridimensionais no computador.
Afirma ser t4o intuitivo quanto modelar argila ou espuma, aliando todas as ferramentas

computacionats graficas disponiveis em modeladores 3-D.

223 LHX

O LHX (Library for Haptics) é um software dividido em médulos desenvolvido
na Universidade de Tsukuba, que visa desenvolver aplicagGes variadas para dispositivos
como o Phantom e o Argone. Ele é composto por sete médulos: device driver — gerencia
os sensores de entrada e os atuadores de saflda da interface haptica; haptic renderer — é
responsavel pelo calculo das forgas, dureza e viscosidade a serem simulados; model
manager — implementa os objetos virtuais, controlando suas formas e caracteristicas;
Primitive manager ~ responsavel pelas formas primitivas dos objetos, como cilindros,
esferas, cubos, efc...; Autonomy engine - determina o comportamento dos objetos
virtuais, a gravidade, viscosidade e elasticidade sfo implementadas nesse médulo;
Communication interface - permite que o sistema seja utilizado por multiplos usudrios;

Visual display manager — gera a imagem gréafica do ambiente virtnal,

Figura 5 — Estrutura basica do LHX



11

224 VRML

O VRML (Virtual Reality Modelling Language) ¢ um formato aberto para
graficos tridimensionais na Internet. Tecnicamente falando, 0 VRML ndo é nem
realidade virtual nem uma linguagem de modelagem. Realidade virtual tipicamente
implica em experiéncias 3D imersivas (como visores e capacetes de realidade virtual) e
dispositivos de entrada 3D (Como luvas digitais e apontadores espaciais). Porém este
ndo € o objetivo da linguagem VRML. Ele é simplesmente um formato de troca de
arquivos e dados 3D, usando e definindo uma linguagem muito semelhante as
aplicagdes 3D encontradas no mercado, como transformagdes hierarquicas, fontes de
luz, pontos de vista, geometria, animago, neblina (fog), propriedades de materiais e
criacdo e aplicacfio de texturas.

Outra caracteristica ¢ que a linguagem VRML ¢ andloga 4 popular linguagem
HTML. Isto significa que o VRML serve como uma linguagem simples e
multiplataforma para publicar paginas 3D na Intemnet, ¢ isto ¢ motivado pelo fato de
muitas aplicagdes serem melhor experimentadas tridimensionalmente, como jogos,
visualizagdes cientificas e em engenharia, experiéncias educacionais e arquitetura, Estas
aplicacdes requerem uma grande intera¢io, animagio e participacio do usuvario, muito

além do que ¢ capaz uma pégina sem profundidade como a proporcionada pelo HTML.



12

2.2.5 OPENGL

O OpenGL ¢ um software de interface para hardware grafico. Trata-se de uma
biblioteca gréfica com aproximadamente 150 comandos distintos, que sdio utilizados
para especificar objetos e operagGes a fim de se obter aplicagdes 3-D interativas, através
da criacdio e renderizagiio de modelos 3-D a partir de formas primitivas. Fla também se
caracteriza por ser portdvel entre quaisquer plataformas com a biblioteca OpenGL
instalada (software), ou implementada (hardware), desde PCs comuns até estagSes de
trabalho baseadas no sistema operacional UNIX. Desta forma, o OpenGL acabou por
tornar-se um padréo em interfaces graficas 3D no mercado. Dentre as plataformas que
suportam o OpenGL estdo o MS-Windows, Linux, SGI, Macintosh e Sun.

Para que o OpenGL seja independente da plataforma utilizada, nenhum comando
que envolva operages graficas em janelas e rotinas para entrada de dados foi incluido
no OpenGL. No lugar disso, deve-se trabalhar através do sistema de janelas que esta
rodando na plataforma utilizada ou outras bibliotecas que oferegam fungdes de
manipulagdo de eventos e janelas, como 0 GLUT (OpenGL Utilities Toolkit).

O OpenGL fomece um poderoso mas primitivo conjunto de comandos de
renderizacio de modelos 3-D. Isso d4 muita liberdade ao programador, mas ao mesmo
tempo apresenta uma complexidade muito grande na execugio de comandos de alto
nivel. Apesar disso, o usuario pode desgjar ter sua propria biblioteca de rotinas e
comandos baseados no OpenGL de forma a simplificar o seu trabatho. Para isso, ja
foram desenvolvidas diversas rotinas e bibliotecas adicionais que apresentam
caracteristicas especializadas, como o OpenGL Utility Library (GLU), a OpenGL
Extension to the X Window System (GLX), que contém formas de se criar modelos em
OpenGL e associando-os a janelas graficas em sistemas X Window; e o Open Inventor,
que se caracteriza por ser uma biblioteca orientada a objetos baseada em OpenGL que
fornece objetos e métodos para criar aplicativos graficos 3-D. Criado pela Silicon
Graphics e escrito em C++, Open Inventor fornece objetos e modelos pré-construidos
em OpenGL para criar e editar cenarios tridimensionais de forma muito mais facil e

rapida.



13

Apesar de ser utilizado na maioria dos casos em hardware especifico para
graficos 3-D, implementagdes do OpenGL apenas por software sdo também possiveis, o
que fazem com que o alcance dele seja maior ainda, principalmente para usudrios de
PCs menos sofisticados. Além disso, a tendéncia ¢ a de que placas graficas aceleradoras
3-D sejam itens comuns para o usuirio comum em pouco tempo, possibilitando o
alcance cada vez maior de aplicagSes otimizadas.

Para se renderizar uma imagem na tela, geralmente segue-se o seguinte roteiro

de comandos:

1) Construir formas a partir de primitivas geomstricas, criando por meio destas
descricdes matematicas de objetos (O OpenGL considera pontos, linhas, poligonos,
imagens e bitmaps como primitivas);

2) Organizar os objetos em um cendrio tridimensional e selecionar o ponto de
visio desejado da cena montada;

3) Calcular a cor de todos os objetos. A cor pode ser explicitamente atribuida
pelo programa, determinada por uma condi¢do de iluminacdio, obtida apos uma
“colagem” de uma textura sobre o objeto, ou uma combinagio destas trés ages.

4) Converter toda a descri¢io matematica dos objetos em pixels na tela do

computador. Este processo é chamado rasterizaciio (rasterization).

Durante estes estagios, OpenGL pode executar outras operagbes, como eliminar
partes dos objetos que estdo cobertos por outros objetos no cendrio. Adicionalmente,
depois que a cena é rasterizada é possivel fazer algumas operagdes nos pixels antes que

eles sejam desenhados na tela,

2251 GLUT - The OpenGL Utility Toolkit

O OpenGL Utility Toolkit ¢ uma interface de programacfio que fomece
ferramentas para simplificar a criagio de programas baseados no software de interface
grafica OpenGL.

Uma das maiores realizagdes do OpenGL foi ser um software de interface

desenvolvido para ser independente do sistema utilizado. Porém, uma operaciio como a



14

criagio na tela de uma janela requer chamadas diretamente no sistema de janelas
utilizado. Estas chamadas s&o descritas através de uma interface de programagio que
fornega a ligagéio entre o OpenGL e o sistema de janelas adotado, como por exemplo o
API do Windows. Toda esta independéncia do OpenGL resulta num sistema muito
poderoso, mas extremamente dificil de ser utilizado, uma vez que o programador
precisa estar bastante familiarizado com a API em que ele est4 programando, e aprender
APIs pode ser bastante cansativo. Além disso, ao se escrever um programa que utilize o
OpenGL somado s chamadas ao sistema de janelas utilizado, o programa acaba se
tornando dependente do sistema de janela, perdendo sua portabilidade. O GLUT foi
desenvolvido a partir disto para preencher esta necessidade de uma interface entre o
OpenGL e o sistema de janelas adotado pelo programador. A interface foi desenvolvida
para ser simples e a0 mesmo tempo servir para se criar programas eficientes em
OpenGL.

Através de diversas fungBes é possivel executar fungBes como inicializar e criar
multiplas janelas para renderizago pelo OpenGL, manejar eventos relacionados com
estas janelas, controlar diversos dispositivos de entrada, carregar mapas de cores,
inicializar e desenhar primitivas graficas tridimensionais (cubos, cones, esferas, toroides
tanto solidos como em wireframe), gerenciar processos em segundo plano, oferecer
suporte a criag@o de menus simples, suporte para criagio de fontes, além de gerenciar o
loop de execugfio do programa apés ter concluido todo o processo de configuragdo do

mesmo.

2.2.6 OPENINVENTOR

O Open Inventor é um sofiware grafico 3-D orientado a objetos. O Open
Inventor é uma biblioteca de objetos e métodos, que podem ser utilizados para criar
programas 3-D interativos. Independente do sistema de janelas utilizado, escrito e
utilizado em C++, inclui no seu pacote algumas fungdes em C.

O Open Inventor € um conjunto de “blocos” (objetos) que permitem ao usuario
usar todo o potencial de equipamentos de hardware graficos com o minimo de esforgo
em programagdo. Gragas as caracteristicas de encapsulamento e heranca caracteristicas

da programacfo orientada a objetos, os programas sio escritos de forma mais intuitiva e



15

rapida pelo programador, que passa a se preocupar com o que fazer, ao invés de como
fazer.

Baseado em OpenGL, o programa inclui bibliotecas que podem ser utilizadas,
ampliadas e distribuidas para outros usuérios.

O Open Inventor utiliza 0 OpenGL para renderizagio. No OpenGL, no entanto,
0 processo de renderizagfio ¢ explicito, enquanto que no Open Inventor a renderizagio,
assim como todos os outros comandos, s3o encapsulados dentro dos objetos. Isto isola o
desenvolvedor de detalhes que néio sdo interessantes para o completo entendimento da
aplicagdio, o que simplifica este processo.

No manual do OpenGL, o autor faz um paralelo entre a programagfo grafica em
OpenGL e no Open Inventor 4 construg@io de uma casa. No OpenGL, a construgdo &
acompanhada pelo seu criador passo a passo, que precisa comprar cada pega — tijolos,
parafusos, cimento, madeira, telhas separadamente e acompanhar a montagem da casa
desde o assentamento dos tijolos 4 passagem de fiagdo elétrica pelas paredes. No Open
Inventor, no entanto, o criador encontra conjuntos de construgio — paredes com toda a
fiacdo e tubulagfo prontas, tethado, portas e janelas j4 prontos, bastando encaixé-los
como desejar. Assim observa-se que no processo de criagiio da casa pelo OpenGL o
criador tem total liberdade para construi-la como desejar, mas no entanto precisa
conhecer cada processo (assentamento de tijolos, colocagdo de piso) detalhadamente e
de forma a fazer o melhor aproveitamento de recursos. J4 no Open Inventor a
construgio & bem mais rapida e simples, a construgdio ja é otimizada, porém o criador ja

ndo possui tanta flexibilidade na criagdo da casa.



16

3 PROJETO DO SIMULADOR CIRURGICO

Neste projeto foi desenvolvido um simulador para o mouse espacial
desenvolvido pelo departamento. Como o projeto é uma continuacio de um trabalho de
iniciagiio cientifica, ele é baseado nos trabathos realizados anteriormente, assim a placa
de aquisiglo ¢ a CAD12/36 da Lynx, e o mouse espacial é o mesmo construido pelos
alunos de iniciagio cientifica.

O ambiente grafico do simulador esta desenvolvido na linguagem C, utilizando-
se o programa MS-Visual C++, além das bibliotecas graficas do OpenGL e do GLUT.

O simulador esta dividido em moédulos, de maneira semelhante ao LHX. Foi
necessario desenvolver um modulo grafico, um médulo de renderizagfio de forgas, um
device driver e um autonomy engine. Nesse caso nfo foi necessario um médulo de
comunicagdo, pois o simulador nfo aceita multiplos usuarios ¢ o médulo grafico
engloba o gerenciador de primitivas, o gerenciador de modelos e gerenciador de display.

Neste projeto existem trés pontos criticos, o primeiro deles é a modelagem e o
método de detecgdio de colises, o segundo é a modelagem da interferéncia entres os
corpos e o método de analise das forgas envolvidas, e o terceiro ponto envolve a escolha

do hardware e do software para essa aplicagfo. A analise desses aspectos ser4 mostrada

a seguir.



17

4 ESTUDO DE VIABILIDADE

O projeto ¢ uma continuagio do trabatho desenvolvido pelos alunos de iniciagio
cientifica: estudo da placa de aquisigio, o programa de aquisi¢io de dados o mouse sem

retorno de forga, a modelagem dos motores e 0 mouse com retorno de forga.

4.1 ESCOLHA DO HARDWARE E DO SOFTWARE

Um dos aspectos mais importantes dos simuladores cirirgicos é a necessidade
de ser em tempo real, ou seja, as informagbes devem ser processadas o mais rapido
possivel de maneira que os cirurgides tenham a sensagiio de operar um paciente real.
Estudos na area concluiram que para se obter um resultado satisfatério para o cirurgido,
as imagens devem ser atualizadas nas telas a uma taxa de no minimo 10 Hz , o retorno
de forga deve ocorrer no minimo a uma taxa de 40 HZ, a taxa de amostragem no
dispositivo de comando deve ser de no minimo 200 Hz. No Phantom essa amostragem &
feita numa taxa de 1000 Hz.

O hardware a ser utilizado foi 0 mouse espacial desenvolvido pelo Departamento
e em fase de montagem, que é o dispositivo com retomo de forga. Foi necessario uma
analise de seu funcionamento para determinar se ele ser4 capaz de atingir as exigéncias
propostas. A taxa de amostragem é determinada pela capacidade da placa de aquisic3o,
sendo ela capaz de amostrar com uma frequéncia méaxima de 2 MHz, sendo possivel
dividir essa freqiiéncia com a programagfio dos timers embutidos na placa.

A parte grifica foi desenvolvida na linguagem C++, utilizando a biblioteca
grafica do OpenGL e do GLUT. Essa linguagem foi a escolhida devido ao fato do Open
GL ser uma linguagem suficientemente poderosa para a aplicagiio proposta, por ela ser
distribuida gratuitamente na Internet como software de dominio publico, e devido a
familiaridade com a linguagem de programagio e com o uso do OpenGL, além do
OpenGL. ser utilizado como plataforma grafica de vérios simuladores cirirgicos. Mais
vantagens podem ser vistas no capitulo 2 ~Estado da Arte.

Os demais médulos também foram desenvolvidos na linguagem C.



18

Neste projeto, os computadores utilizados foram PC’s comuns, sem nenhuma
aceleracio grafica por placas especiais; assim, a capacidade de processamento € inferior
a utilizada nos simuladores pesquisados em outros projetos {(onde foi utilizado o
processamento paralelo, com até um processador dedicado para cada modulo). Devido a
esta restrigdo, o simulador nfo utiliza nenhum efeito fotorrealistico, como sombras,
texturas e superficies complexas. Implementou-se somente a visualizagiio do leiaute da

ferramenta e a pele na tela do computador.

4.2 DETECCAO DE COLISAO

Detecgdo de colis@io € o processo pelo qual os sistemas de simulagfo gréafica tém
condigSes de processar, manipular e reportar informagles referentes ao contato fisico
entre objetos na tela, de forma a determinar as conseqiiéncias logicas deste contato.
Usados em sistemas de simulagdo de ambientes graficos reais, eles sio exiensamente
requeridos em aplicagdes na computagio grafica no desenvolvimento de jogos, na
roboética, e em sistemas hdpticos como ¢ do presente projeto.

Este sem divida € o maior gargalo computacional em cenérios virtuais muito
complexos, ja que todos os poligonos de todos os solidos que compde toda a cena
devem ser analisados e comparados com outros de forma a caracierizar a colisdo, além
de executar a conseqiiéncia deste contato, desde impedir a intersec¢fio entre os objetos
que se colidem até mesmo provocar a deformagio dos mesmos.

Existem iniimeros algoritmos para o processo de detecgdio de colisfio, cada um

com uma aplicabilidade e grau de abrangéncia:
a) Detecgfio de colisdo por forga bruta

O algoritmo mais simples, porém o mais exigente em termos computacionais, ¢
o método de forga bruta, que consiste basicamente em testar todos os poligonos contra
todos os restantes da cena a cada periodo de animagfo. Este método funciona bem para
modelos simples, com poucos poligonos ou objetos sélidos mais simples, mas devido ao
aumento exponencial de comparacBes a serem feitas na medida em que o cendrio vai

ficando mais complexo, este algoritmo fica rapidamente invidvel de ser utilizado.



19

O algoritmo pode ser melhorado através do uso de um conjunto de objetos que
séio candidatos a se colidirem, por exemplo. Neste caso, apenas os poligonos ou s6lidos
que tenham um indicador marcado como “verdadeiro” sfo testados. Este método pode
desconsiderar os s6lidos ou poligonos que nunca irfio se colidir entre si no instante
considerado, o que pode simplificar a exigéncia computacional,

Outra téenica que pode ser utilizada ¢ o uso de volumes de envolvimento
(bounding volumes). Esta técnica cerca solidos muito complexos (compostos por muitos
poligonos) através do uso de sélidos mais simples, como cubos ou esferas, que se
tomam entio o solido de teste. Estes s6lidos s@o mais simples de se comparar
matematicamente pelo método da forga bruta, tornando o método mais rapido ou
mesimo utilizdvel. No entanto, se dois objetos estiverem muito proximos entre si, Seus
volumes de limite tornam-se intteis. Além disso, objetos muito complexos (objetos
cdncavos, por exemplo) podem requerer volumes de limite muito grandes e que limitam
falsos espagos se forem utilizados sélidos como cubos ou esferas. Pode-se entdio utilizar
solidos mais complexos, mas h4 um ponto em que aumentar a complexidade destes

solidos ira fazer com que o método perca a sua eficiéncia.

Figura 6 - Volumes de envolvimento nos sélidos




20

b) Detecgfio de colisdo por geometria analitica

Um dos métodos mais rapidos existentes para a detecgio de colisfo € o que usa
métodos de Ray Tracing. Utilizando técnicas de geometria analitica, este método é
utilizado na computagdo grafica principalmente em algoritmos de iluminagiio e de
geragdo de sombras em cenarios virtuais.

Define-se primeiramente um raio através de representagio vetorial.
Essencialmente um raio parte de um ponto inicial e se desloca na dire¢io de um vetor de

dire¢Zo. Entdo a equagio do raio é:

Point OnRay = Raystart +t - Raydirection )

Onde ¢ é um niimero real entre [0,0]

Substituindo t por zero na equagfio, obtém-se o ponto inicial, e substituindo-se
valores diferentes obtém-se outros pontos ao longo do vetor.

Para se detectar a colisdo entre a ferramenta (simplificada por um cilindro) e um
plano representando o drglo do paciente, primeiro deve-se determinar a equagfio

vetorial do plano:

X, e X=d )
onde:
X, e X séo vetores ¢ d ¢ um nimero real;
X, € um vetor normal ao plano;
Dot (*) representa um produto escalar;
X é um ponto na superficie do plano (Vetor de comprimento zero)
d ¢ um valor real que representa a distincia do plano ao longo da normal;

por exemplo, se o ponto pertencer ao plano, d fica igual a zero.

Essencialmente um plano divide o espago em duas partes, portanio tudo o que é

necessario para defini-lo € somente um ponto e uma normal que saia deste ponto e que



21

seja considerado normal ao plano que se deseja definir, por exemplo, se for utilizado
como ponto o ponto de origem (0,0,0) e para a normal o vetor (0,1,0) o plano definido é
o formado pelos eixos x e z.

Usando a equagfio do plano a normal & substituida pelo valor de X, citado
anteriormente e o ponto da qual a normal se origina ¢ substituido por X. O valor de d
que esta faltando pode ser facilmente calculado utilizando-se um produto escalar.

Se ocorre a intersecgfio de um raio com um plano entdio deve haver algum ponto

no raio que satisfaca a equagio:
X, e PointOnRay=d ()
pois qualquer ponto que pertence ao plano especificado satisfaz esta equagéo.
Substituindo-se (1) em (3):
(X, » Raystart)+t-(X, « Raydirection)=d @)
E isolando-se t:

fe (d-xne Raystart)
(xne Raydirection) ®)

Esta ¢ a base da detecgio de colisdo. Através deste calculo é possivel saber qual
a distancia do Raystart (ponto de partida do raio) até a interseccéio com a tela. Todas as

variaveis a direita da equacéo acima estio disponiveis:
e O Raystart, dado pela posi¢fio dada pela extremidade do mouse espacial;

¢ Um pivo, onde se d4 a articulagiio da ferramenta, sendo essencialmente o ponto

de passagem da ferramenta ao corpo do paciente;
e A Raydirection, facilmente calculada pelo Raystart e o pivé;

e X, previamente definido para posicionar a superficie do 6rgéo virtual;



22

Como o comprimento da ferramenta d é outro valor conhecido, entio

escrevendo-se a equagio na forma:

- 4| X»*(Point OnRay— Raystart)
(x, o Raydirection) (6)

Pode-se detectar a colisio da ponta da ferramenta, além da diregéio na

qual esta ocorre, a partir do pseudo-codigo: Se t <= ¢ =» Esta ocorrendo a colisio.

43 CALCULO DA INTERFERENCIA

Detectado o contato, inicia-se o calculo da forca devido a penetragdo do
apontador no corpo. O simulador é do tipo continuo, ou seja , ele considera as forgas
devido a penetracio do apontador no corpo, ignorando os efeitos devido ao atrito.

Para modelar as forgas de reagfio dos objetos, foi utilizado inicialmente um
modelo massa-mola, com uma malha discretizada e independente, isto &, a penetragio
em um ponto ndo afeta os pontos ao redor. Assim a superficie do corpo ficaria modelada

como na figura abaixo.

TET

Figura 7 ~ Modelo Massa-Mola independente

O segundo passo ser4 modelar a resisténcia da superficie do corpo de maneira
que a penetracdo em um ponto produza deformagdes nos pontos ao redor. Para isso
existem diversos métodos como MEF (elementos finitos), o MDF (diferencas finitas) ou

a utilizagdo de modelo analitico por composigio de molas em série e paralelo.



23

43.1 MEF (METODO DOS ELEMENTOS FINITOS)

Este ¢ o método mais preciso para o calculo das forgas resultantes devido a
penetragio no corpo, eniretanto exige uma quantidade de calculos muito elevada, o que
inviabiliza o seu uso em um processamento em tempo real. Uma saida possivel seria a
utilizacgo de um software de elementos finitos (por exemplo o Ansys) para modelar as
forcas em cada né superficie do corpo de forma barch, e guardar essas informagdes em
arquivo, que seria utilizado para calcular a forga resultante. Essa solugiio apresentaria
resultados satisfatérios em relagdo aos valores das forgas, com uma velocidade razoavel,
entretanto a saida gréafica seria prejudicada, pois esse método permite calcular apenas a
forca em cada no6, ignorando os efeitos de deslocamento nos nés adjacentes, o que
impossibilitaria a saida para a tela. A determinagio da deformaciio nos pontos
adjacentes poderia ser feita por uma interpolagio matematica, talvez por uma curva
spline, o que geraria o efeito de deformacfo na tela, o que pode ndo ser a deformacgio

verdadeira,

43.2 MDF ( METODO DAS DIFERENCAS FINITAS)

Nesta solugio seria utilizado o método das diferencas finitas para calcular as
deformagdes e as forgas nos nés da superficie do corpo. Este método ndo exige um
esforgo computacional tio elevado quanto 0 MEF, sendo possivel a sua implementagio
no programa. Entretanto ¢ necessario um estudo profundo da discretizagio da malha e
da toleréncia adotada, de forma a garantir a convergéncia do método. Também serd

necessario averiguar se o método é capaz de calcular as respostas no tempo necessario.



24

4.3.3 MODELAGEM POR UM SISTEMA DE MOLAS EM SERIE E EM
PARALELO

Essa solugdio consiste em modelar a superficie do corpo em uma malha de nés

ligada por molas em vérias direges, como no exemplo ilustrado abaixo:

Figura 8 - Matha com um sistema de molas

A solugio seria calcular analiticamente os efeitos da penetracdo do apontador na
matha. Para uma malha muito grande esse método se torna invidvel, pois a modelagem
dessa malha exigiria uma grande quantidade de calculos.

Uma alternativa € criar uma malha menor (célula), e considerar que o3 efeitos
sobre ela sfo semelhantes em qualquer parte da malha maior, Essa aproximacio nio
foge muito da realidade, pois ao puxar um ponto do tecido da pele, apenas uma pequena
regido sofre deformacdio por influéneia da forca aplicada. Assim bastaria calcular o
efeito da penetragdio do apontador no meio da célula e deslocar esse efeito para o ponto
em que ocorTeu ¢ contato.

Essa solugfio ainda precisa ser comparada com os demais, para verificar se os
seus resultados s&0 compativeis.

Esse método pode apresentar um problema de continuidade nas bordas das

células e, dependendo do resultado, podem ocorrer saltos na deformagdo da superficie.



25

Descontinuidade

Figura 9 — Problema de descontinuidade na malha

Uma solugdio para esse problema & utilizar uma interpolagdo na borda, de
maneira a suavizar essa descontinuidade, o que ndo é real, mas fornece resuliados
graficos mais satisfatérios.

Para determinar qual dos métodos & melhor, serd realizado um estudo que
comparara os resultados. Nesse estudo serdio levados em conta, além da precisdo dos
resultados, o custo computacional ¢ a complexidade do algoritmo, pois em dos
requisitos do projeto é a velocidade dos caleulos de forga e deformaggo, pois a taxa de
resposta devera ser de 10 Hz para deformagdo e de 40 Hz para forga, incluindo o tempo

de processamento de imagem e controle dos motores.

44 MODULOS DO SIMULADOR

Baseado nos softwares disponiveis no mercado, o simulador esta dividido em
modulos, facilitando a sua implementagfio ¢ a corregdo de possiveis erros. Ele é dividido

em:

44.1 DEVICE DRIVER

O device driver é baseado no programa de aquisi¢do desenvolvido pelo aluno
Erick Dario Leén Bueno de Camargo, pois seu programa é capaz de calibrar os sensores

e configurar a placa de aquisi¢io utilizada O programa que controla os motores foi



26

desenvolvido baseados nesses estudos. Ele envia os sinais baseado nos resultados do

médulo de renderizagdo de forgas.

44.2 AUTONOMY ENGINE

O autonomy engine foi desenvolvido em paralelo com o moédulo de
renderiza¢dio. Como foi dito anteriormente, os objetos possuem como caracteristicas
apenas a constante de elasticidade, pois 0 modelo adotado foj 0 massa-mola, A inércia
dos objetos foi ignorada, pois o simulador d4 apenas a resposta devido a penetragio nos
objetos, e ndio ¢ capaz de simular a locomogdo dos mesmos. A estrutura desse modulo

depende diretamente do método utilizado no médulo de renderizago de forgas.

44.3 MODULO DE CALCULO DE FORCAS

Este médulo & responsavel pelo calculo das forgas de retormo nos dispositivos de
controle. Como foi discutido anteriormente, sua estrutura depende do método adotado

para o célculo das forgas e deformagdes.

44.4 MODULO GRAFICO

O médulo grafico utiliza as bibliotecas do OpenGL e do GLUT, suas entradas
dependem dos resultados do médulo de renderizagiio de forgas. Aqui é imporiante
salientar que os gréficos devem mostrar apenas a informagfo estritamente necessaria,
pois o uso de efeitos visuais estéticos consome uma capacidade computacional

indisponivel para o projeto.

45 CONTROLE DOS MOTORES

Uma das atividades desenvolvidas foi o estudo € a andlise do controle dos

motores para a atuagfio no retorno de forgas.



27

O sistema implementado é caracterizado como sendo de malha aberta, pois a
intengdo ¢ apenas o de gerar uma for¢a aproximadamente proporcional posigio do
mouse espacial, ndo sendo necessdrio controlar sua posicdo ou for¢a aplicada; desta
forma nfio ha necessidade de uma realimentacfo da forga aplicada pelos motores.

Para atingir esse objetivo, foi necessario modelar os motores e a estrutura, pois a
forca aplicada na méio do usurio é a resultante de um torque aplicado pelos motores na
estrutura. Por sua vez, a saida do motor (torque) ¢ gerada por um sinal elétrico enviado
pelo computador, e determinada pelo programa de controle dos motores a partir dos
dados relativos a posi¢io do mouse espacial no ambiente virtual,

O sistema esquematizado a seguir mostra como os sub-sistemas estfio
interligados;

Sinal
CPU Amplificador | Voltagem

Motor |

Torque

s [Evis

Figura 10 - Integragfio dos sub-sistemas



28

5 IMPLEMENTACAO

51 MODELAGEM EM ELEMENTOS FINITOS

Para que o algoritmo de retorno de forgas funcionasse de forma rapida e préxima
a real, optou-se pela simplificacio do modelo de pele para um que apresentasse reagdes
apenas na vertical, ou seja, que ignorasse por exemplo as forgas de atrito com a pele.
Como as operagBes também implicam em pequenas deformages, considerou-se que o
modelo deveria obedecer a lei de Hooke F=kx.

Uma das etapas do trabalho foi o de fazer a analise de curvas de forga versus
deformacfio verticais para uma superficie plana presa em suas extremidades, que
constituiria a pele virtual e definiria a 4rea de trabalho do simulador desenvolvido. Com
as deformagdes, pode-se inferir um valor de elasticidade para cada ponto discretizado da
malha, que se torna um parimetro de entrada no calculo do retorno de forgas.

Com o auxilio do Sr. Rogério Silva Santana, foi possivel fazer toda esta anélise
sem ocupar uma grande quantidade de tempo, j4 que o interesse nio seria o de explorar
o software Ansys, e sim somente obter valores qualitativos de elasticidade da pele
nestas condigGes em cada ponto da malha.

Foi utilizado um modelo de placas, com a seguinte geometria;

Espessura 2,5 mm
Dimensdes laterais 100mm X 100mm
Numero de elementos 400 (20 x 20 nos)
Numero de pontos de amostragem 200 (10 x 10 nos)
Forga de deformago imposta IN

| Modulo deelasticidade E | SIN/mm® -
Coeficiente de Poisson v 0,4

Tabela II - Pardmetros para o modelo em Ansys




29

Como o mouse espacial possui muitas folgas e alta inércia devido aos seus
contatos e acionamentos, optou-se por simular um material semelhante & borracha, pois
outros elementos mais elésticos poderiam tornar taxas de retomo de forgas tdo baixos
que acabariam sendo filtradas pelo sistema,

Primeiramente foi criado um modelo de pele com 10000 elementos, mas o
tempo para efetuar os calculos de deformagfio para um ponto, de aproximadamente 15
minutos, motivou a procura de maihas com menos elementos mas que ainda gerassem
resultados com qualidade. A matha com 400 nés mostrou-se ideal em termos de
precisdo de resultados versus velocidade de célculo (de aproximadamente 4 segundos
em cada ciclo).

Grafico Coeficiente de Elasticidade versus Posicdo

|m20,00-35,00]
|025,00-30,00 |
| 20,00-25,00 i
| 0] 15,00-20,00 |
310001500
|25,00-10,00

|m000-500 |

N6 emy

Figura 11 — Coeficientes de Elasticidade da Pele



30

Uma imagem da malha pode ser vista na figura a seguir:

Figura 12 - Modelo da pele em Ansys

Na figura pode-se observar o engastamento feito nas bordas da pele. Pela
simetria do modelo, foi necessario calcular deformagdes para apenas 1/8 dos nés da
malha, o que agilizou ainda mais o trabalho.

Aproveitou-se 2 oportunidade para conhecer algumas potencialidades e fungdes
especiais do Ansys que Possibilitam a visualizaggo grafica de deformacdes e tensies na
malha:




a) Forca aplicada em né proximo as bordas

Figura 14 — Tensdes de Von Mises na malha devido & forga aplicada préximo a
borda

31



32

Nestas simulagdes pdde-se observar um fenSmeno inferessante, mas que ndo
sera considerado no simulador: as deformagdes méximas ndo se localizam no ponto de
aplicagio da forca quando este ¢ feito proximo as bordas. Isto decorre do fato das
bordas terem sido engastadas, o que faz com que o material se comporte como uma viga
engastada em uma das extremidades e sendo fletida por uma for¢a no centro da barra.
Neste caso a deformagiio méxima também nilo se situa no ponto de aplicagiio da forca,
A tensfio no entanto é méxima no ponto de contato da ferramenta, como pode ser
observado na Figura 14 — Tensdes de Von Mises na malha devido & forca aplicada

préximo 3 borda.

Figura 15 - Deformaggo vista de perfil

Os resultados obtidos podem ser melhor analisados na seguinte tabela;

32216,49 20096.46 |17689,72 |16903,31 16700,35 16903,31 ]17689,72 12009646 32216,49
20096,46 [8340,28 16088,28 (5366.82 5183,50 [5366,82 [6088,28 (834028 20096.46
17689,72 16088,28 [3911,90 [3226,22 3053,71 13226,22 [3911,90 608828 17689,72
16903,31 [5366,82 [3226,22 [2558,46 2391,26 (2558,46 [3226,22 [5366,82 16903,31
16700,35 |5183,50 [3053,71 [2391,26 222568 1239126 (3053,71 [5183,50 16700,35
16903,31 |5366,82 [3226,22 (2558 46 2391,26 |2558,46 [3226,22 [5366,82 16903,31
17689,72 6088,28 13911,90 [3226,22 3053,71 [3226,22 [3911,90 [6088,28 17689,72
20096,46 [8340,28 |6088,28 [5366,82 5183,50 15366,82 1608828 [3340.28 20096,46
32216,49 120096,46 [17689,72 [16903,31 16700,35 |16903,31 |17689,72 [20096,46 32216,49

Tabela HI — Coeficientes de Elasticidade da Pele

A deformagio no ponto central, ao contrario, tem a seguinte configuragiio:




Figura 16 - Deformagciio devido a aplicagfio de forga no centro da malha

Figura 17 -TensGes de Von Mises devido 3 forga aplicada no centro da malha

33




34

Figura 18 - Deformagfio vista de perfil

A partir da figura acima, pode-se observar que a forca aplicada num
ponto influi em praticamente toda a 4rea da malha. O raio de influéneia é bastante
elevado, tendo cerca de 1000 vezes a ordem de grandeza da penetragio.

A simetria da malha é bem representada pela Figura 16 - Deformagio
devido 4 aplicagfio de forga no centro da malha e pela Figura 17 -Tens6es de Von Mises
devido 4 forga aplicada no centro da matha,

52 MODELAGEM DINAMICA

Existem duas possibilidades para modelar a dindmica do mouse com retorno de
forgas. A primeira ¢ a utilizagdo de um modelo se mecanismo de quatro barras, com
acionamentos nas barras de base. A segunda opglio é desacoplar as barras, e trata-las

como mecanismos independentes.

52.1 METODO DO DESACOPLAMENTO DAS BARRAS

O método & baseado na decomposigio da forca resultante em uma componente
vertical (Fz) e uma horizontal (Fxy).

A forga horizontal sera aplicada pelo motor da base do mouse, e modelagem sera
simplesmente a aplicacio de um torque na base do mouse de maneira 2 anular o torque

provocado pela forga (Fxy).




35

02

81

Figura 19 — Vista lateral das hastes do manipulador
M =(4* cos(81) + B* cos(B1 + 62))* Fiy o

A forga vertical serd anulada pelo torque aplicado nas outras duas articulacdes.
Nesse modelo foi admitida a seguinte hipétese: cada motor ird anular uma
parcela igual da forga Fz, assim cada barra estard sob efeito de uma forga Fz/2.

Diagrama de forcas da primeira barra do mouse espacial.

Fz

81

Figura 20 — Representacio da forga aplicada na haste de suporte

A partir da forga aplicada na extremidade da barra, calcula-se o torque que o
motor deve aplicar a barra:

Mt = Fz * 4* cos(01) (8)



36

A barra que sustenta a Gltima barra é considerada como se estivesse imdvel,
assim deve-se equilibrar os momentos na barra AB, a0 redor da articulagio que une as
duas barra. A forga F é provocada pelo torque do motor aplicado a alavanca C, que

empurra a barra paralela a primeira,

62

02 | g,

61

Figura 21 — Representacfio do equilibrio de forgas na haste da ponta

Da equagéio de equilibrio dos momentos, obtém-se;

Mi e A 4 517090+ 61-62)
B sin(92) )

Entre as duas modelagens, 0 método do mecanismo de quatro barras apresenta o
resultado mais coerente, sendo este o escolhido para a implementaggo.
Note que o torque dos motores sers 3,2 vezes menor do que o calculado, devido

a relacéio de transmissfio entre as engrenagens.

5.3 HARDWARE

Aqui serdo apresentados os aspectos considerados em cada componente de

hardware utilizado. Um aspecto importante do hardware é a aquisigio de dados:



37

5.3.1 AQUISICAO DOS DADOS

A partir do estudo desenvolvido pelo aluno Erick Dario Leon Bueno de
Camargo, foi desenvolvida a interface de aquisicdo de dados do mouse com retormo de
forgas.

Inicialmente, foi tentada a utilizago de interrupgdes para realizar a aquisi¢io de
dados a uma freqiiéncia constante. Entretanto a solugdo ndo se mostrou vigvel, devido 3
complexidade em se implementar as interrupgdes por hardware no ambiente Windows e
a falta de necessidade. A aquisi¢iio a uma freqoéncia constante ¢ necessaria quando se
deseja medir a velocidade. Como essa varidvel nio ¢ utilizada, foi decidido nio
implementar as interrupgdes.

Assim foi implementada uma fungiio semelhante 3 desenvolvida anteriormente
pelo aluno de iniciagdo cientifica, onde a aquisi¢o é ativada via software a cada loop do
programa,

Durante as experiéncias, foi observado um ruido na aquisi¢io dos sinais. Foi
realizado um estudo dos sinais dos potenciémetros (através do uso de um osciloscopio),
que ndo apresentaram ruidos. Assim para contornar esse problema, foi implementado
um filtro idgico no programa de aquisi¢io que minimiza essas pequenas oscilagGes.

Esse filiro logico consiste em realizar diversas medidas (valor livremente
escolhido), e calcular a sua média. Outro artificio utilizado é o truncamento dos valores
medidos na segunda casa decimal. Ao realizar os testes, foi percebido que as oscilagdes
se¢ concentravam na terceira casa decimal, assim ao filtrar essa casa, as oscilagdes

praticamente desapareceram.



53.2 POTENCIOMETROS

Para o mouse com retorno de forgas, foram testados diversos potenciémetros.

A seguir as curvas dos potencidmetros testados:

Angulo versus Tensio
6
@ 5 m—
2.  y=-00192x+5507
= R? = 0,9965
o 3 — - —— e —
L0
©
i [ —
0 +—-y - _
0 100 200 300 400
Angulo (graus)
Figura 22 - Potenciémetro 1 Tens%o versus Angulo
N R
Angulo versus Tensdo
6 -
’J’\ 5 ooy
S 4 “““"M;..
b *e
ke 3 »
@ 2 . .
o S —
0 +— — —~ S
T T —1
0 100 200 300 400
Angulo (graus)

Figura 23 — Potencidmetro 2 Tensfo versus Angulo



39

Angulo versus Tensdo

; |
®5 R aas T TV
= o0
2 4 000.”‘.. B %
‘8 3 1 A 4 i
a2 *s |
@ .
- 1 o

0 .0|

0 100 200 300 400
Angulo (Volts)

Figura 24 — Potenciémetro 3 Tens3o versus Angulo

Os potencidmetros 2 ¢ 3 nfo apresentam um comportamento linear totalmente

linear, mas no trecho utilizado ( de 50 a 150 graus) seu comportamento é linear.

5.3.3 MOTORES ELETRICOS

Os motores utilizados no mouse sdio moto redutores DC do tipo CHP da Bosch.

Nesse projeto € necessario controlar o torque gerado pelos motores, assim foram
levantadas as curvas de Torque X Voltagem. Esse estudo foi realizado pelo aluno de
iniciagio cientifica Tito Coutinho Melco.

Torque x Voltagem  Motor 1

512,00-
d 8,00 - ——y = 2,706x - 5,719
: 2=
2 400 R? = 0,988
=
g
Y| S

01 2 3 4 5 6 7

Yoltagem (V)

Figura 25 — Curva do motor 1 Torque versus Tensdo




40

Torque x Voltagem Motor 2

57 16,00 -
<Z 12,00
g 8,00 - y= 3,2644}( -7.631
% 200 | - R?=0,993
|2 0,00 T T T T | e— |
01234567 |
Voltagem (V) |

Figura 26 - Torque versus Tensdo

Com os resultados foram obtidas as seguintes equacgdes:

T, = 2,706 x V — 5,719
T, =3,644 xV - 7,631  (10)(11)

A partir dessas equagdes e do modelo de forgas utilizados, é possivel determinar

a tensio necessaria a ser aplicada.

53.4 CIRCUITO DE POTENCIA

Foi utilizado um amplificador com realimentagio negativa.

i

Figura 27 Circuito de Poténcia




41

O circuito de poténcia foi construido pelos alunos de graduagio Karine Moriya e
Luiz Felipe Almeida Souza, em seu projeto de formatura.

Foi utilizado um amplificador operacional LM12CL da National, utilizando
resistores de 20kQ.

O ganho de tensfo ¢ dado pela equagiio abaixo:

Vout=Rl+R2xVin (12)
Vour = Eey x Vin (13)
Vout =2 »x¥in (14)

53.5 MOUSE ESPACIAL

A construgio do mouse foi concluida pelo aluno Tito Coutinho Melco, que
seguiu o projeto original, proposto 4 FAPESP.

Figura 28 — Mouse espacial

O modelo proposto apresenta apenas duas articulagdes com motores, o controle

do terceiro grau de liberdade n#io constava do projeto.



42

Foi observado que o mouse apresenta uma inércia bastante elevada, que pode
prejudicar a sensibilidade do retomo de forgas ou mesmo o acionamento dos motores,
Prevé-se, por exemplo, a presenca do fendmeno de histerese no acionamenio dos
mesmos, 0 que s6 podena ser minimizada através da substituicdo dos motores por
outros de melhor qualidade e numa constru¢io mecanica mais refinada.

Para o mouse foi construida uma base de madeira pesada, que facilita o seu uso.
Nessa base foram colocadas duas marcas que ajudam a calibrar o mouse.

Na calibragdo do mouse, as marcas indicam os seguintes angulos:

Posi¢sio 1: angulo 1 =65, dngulo 2 = 0 e 4ngulo 3 = 50.
Posigdio 2: angulo 1 =90, dngulo 2 = 40 e 4ngulo 3 = 130.

Essas marcacdes determinam o volume de trabatho maximo do mouse.

54 SOFTWARE

A seguir serdo apresentados alguns dos algoritmos utilizados no programa assim
como as fungdes desenvolvidas.
O programa foi dividido em diversos médulos, segundo suas aplicagoes.

54.1 ALGORITMO DE DETECCAO DE CHOQUES

Foi desenvolvido um algoritme de detecgfio de choque baseado em geometria
analitica. Este algoritmo foi encontrado em site especializado em computagao grafica, e

utiliza as equagBes apresentadas anteriormente em 4.2 (b).

Ponto de
origem
[:::> Vator Diregio : - "
amanho
=
Equacdo do plano choaue

Tamanho da ferramenta |__

Figura 29 — Algoritmo da detec¢fio de choque



43

PointOnRay = Raystart + t - Raydirection
X, eX=d
X, e PointOnRay=d
(x, o Raystart)+¢-(X, o Raydirection)=d

. (d — Xne Raystart)
Xn e Raydirection
( y )

— _[X Lo (Po intOch_zy - Raystart)]
(X . ® Raydzrection) (16)
Onde:
X, e X s8o vetores e d ¢ um niimero real;
Xy € um vetor normal ao plano;
Dot (*) representa um produio escalar;
X é um ponto na superficie do plano (Vetor de comprimento Zero)
d é um valor real que representa a distincia do plano ao longo da normal;

por exemplo, se o ponto pertencer ao plano, d fica igual a zero.

Este algoritmo foi implementado em conjunto com uma rotina grafica, que
possibilita a visualizagio de um tronco de cone (representando a ferramenta), um plano
(representando o érgéo), uma esfera (representando o ponto fixo de entrada no corpo do
paciente) e uma esfera que aparece quando ocorre o contato.

No médulo grafico do simulador, foram obtidos avangos na forma do calculo do
choque entre a ferramenta e o 0rgéo a ser operado. As rotinas foram generalizadas, de
forma que a deteccio de choque passasse a ser feita independente da localizagio
(quadrante) do ponto fixo, e independente da diregfio e o sentido da mesma.

Nas primeiras versdes do programa, o simulador nio calculava adequadamente
as transformacdes de rotagio da ferramenta, o que fazia com que ela ndo se
movimentasse de acordo com a vontade do operador. As rotinas também niio tratavam
adequadamente as posicdes singulares (como por exemplo as posigBes de coordenadas

igual a zero em x, vy ou z).



44

Isto foi resolvido com uma rotina de caleulo de rota¢des que contemple todas as
condigles e singularidades propostas. Através de uma seqiiéncia de comparagdes o
simulador consegue definir qual o dngulo de rotagio da ferramenta nas direcdes y e z
para obter a nova posicio da mesma no espago. As figuras a seguir ilustram o
funcionamento da rotina de detecgdo de colisio para um quadrante especifico.

| Simulador Cirdrgico

+ Simulador Cindrgico

Figura 31 — Ferramenta e orgdo — apos o choque



45

Apds a implementagfio desta rotina, torna-se bastante simples sua interface com
0 médulo Device Driver (Médulo de captura de posi¢lo no mouse espacial) pois a
entrada do médulo grafico é a posi¢io da extremidade de manipulacio da ferramenta.

54.2 CALCULO DAS DEFORMACOES

Foi definido que o célculo das deformagdes seria feito de forma “batch”™ através
de um pré-processamento em Ansys. Esta solugfio foi escolhida pois apresenta um
resultado mais proximo ao real, além de economizar capacidade de processamento, pois
ndo h# a necessidade de se calcular os efeitos da malha inteira a cada loop do processo.

Foi desenvolvido um algoritmo que permite dividir uma superficie de quatro
lados em uma matha, ¢ localizar em que divisiic ocorre o choque.

Esse algoritmo utiliza geometria analitica para determinar se o ponto pertence a
uma determinada parte da malha,

Inicialmente, calcula-se o perimetro de uma divisdo da malha,

Em seguida, determinam-se os quatro vetores, que unem os vértices da divisio
da malha com o ponto de contato.

Calculam-se as projegdes desses vetores nas laterais da divisio da malha, se a
soma dessas projegdes for maior do que o perimetro da divisdio da malha, o ponto ndo

pertence a esta divisdo, caso contrario pertence.

Perimetro=2xx/f"o;+2x\/ﬁo;{-

Vetor1 = Ponto _de _Contato — Verticel

Veror2 = Ponto _de _Contato — Vertice2

Vetor3 = Ponto _de Contato - Vertice3

Vetor4= Ponto _de Contato — Vertice4
Prod _escalar(Vertical) = V e Vetori

Prod _escalar(Horizontal) = H e Vetor]

Se 2 Prod _escalar < Perimetro



46

Pomto _de _ Contato € (Verticel, Vertice2,Vertice3,Vertice4)

Caso o ponto nfio pertenga a esia divisio da malha, 0 processo se repete para a

proxima divisdo.

54.3 MODULO DE AQUISICAQ

Este modulo realiza interface entre o mouse espacial e o computador, sendo
responsavel pelo controle da placa de aquisico e o tratamento dos dados obtidos. Seu
desenvolvimento foi baseado no trabalho de iniciagdo cientifica do aluno Erick

O médulo foi dividido em 5 fun¢des, cada uma responsavel por uma atividade
da aquisigiio de dados.

As fungdes so as seguintes:

Leitor: a fungdo basica do mddulo, responsavel pela ativacio via software da
conversdo A/D de um canal determinado, e pelo armazenamento do valor convertido em

uma variavel.

C Inicio }
r

Envia Comando
de Leitura

L Leitura de enderego

Leitura OK?

Leitura do sinal

I
C D

Figura 32 — Fluxograma da funcfo Leitor




47

Leia: fungio responsavel pela coleta dos dados dos trés canais utilizados. Utiliza

a funcfo leitor como uma fungio interna.

C  wivio D

=0
I<N. pot )
T-1+1

LeiturafI]~Leitor(¢canall)
[Tensdio[I}=Leitura®10/327

Envia comando
p/ placa (zerar
ponteiros)

r

C D

Figura 33 - Fluxograma da fung¢io Leia

Inicializa: fungfio responsavel pela inicializacdo da placa, nela estio contidas as

palavras de comando que determinam o modo de operagio da placa.
¢ A funco realiza os seguinies passos:
¢ Programar a placa em modo zero
* Programar a meméria dos canais
* Auto-calibrar o conversor A/D
» Esvaziar a FIFO

* Programar a placa no modo desejado (nesse caso ativagio da conversdo via

software, ou “polling™)



48

Calibra: fungfio responsavel pela calibragem do mouse espacial. Colocando o
mouse em duas posi¢des pré determinadas, a fungio armazena a voltagem medida pelos
potenciémetros em cada posicio, determinando a relagdo entre voltagem e 4ngulo
medido.

C Inicio )
Leitura dos 3
candis na posigdo 1

Gravaglio dos valores em
3 varidvaeis

Leitura dos 3
canais na posigdo 2

Gravagio dos valores em
3 variaveis

Calculo dos pardmetros
das equagSes lineares

v

& 3

Figura 34 - Fluxograma da fungdo Calibra

SpinDisplay: fungio responsavel pela interpretagio dos sinais obtidos, ela
calcula a posigdo da ponta do manipulador em coordenadas cartesianas, a partir dos
sinais de dngulos medidos. Ela também & responsavel pela filtragem dos sinais, ao

estabelecer uma média dos sinais aquisitados.



49

544 MODULO MATEMATICO

Médulo composto por algumas fungdes matematicas, que sfio usadas como
suporte pelos outros mddulos.

Suas fungSes sdo as seguintes:

» Armredondamento: fungfio que trunca o valor dos sinais medidos, ¢é

utilizada pela SpinDisplay para ajudar na filtragem dos sinais.
* Produto_escalar: fungiio que calcula o produto escalar entre dois vetores.

* Rotagio: fungio que calcula os angulos de rotagiio para que o sistema de
coordenadas se alinhe com a diregfio da ferramenta. Esta fungiio é
utilizada pelo médulo grafico.

Os fluxogramas néio serfo mostrados, por se tratar de algoritmos matematicos

conhectdos.

54.5 MODULO DE SIMULACAO

Modulo responsavel pela simulaggio computacional, ele calcula as interagdes
{isicas entre os objetos simulados, calculando os pardmetros utilizados pelo médulo
grafico. Este modulo também é responsavel pelo controle dos motores do mouse
espacial.

Ele ¢ composto pelas seguintes fungdes:

Choque2: ¢ a fungdo principal deste modulo, ele é responsavel pela identificacfio
da ocorréncia do choque entre a ferramenta e o plano escolhido e a penetragio da

mesma. Todas as outras fungdes deste médulo sdo suas sub-rotinas.



50

C Inicio )

L Flag de choque = F |

v

I CaloulaDirecao( ) }

| Calecnla normal ao plano |

Lprod_ escalar(normal ao plano, direcao) |

Prod escalar
07

Calculs tam anho
minim ¢ da ferram enta
para ocorrer choque

Penetragio=0
Zers saidas motores

Tam min. <=
tam ferramenta?

Caloula posigdio da ponta
Calcula penetragio

v

malka(ponta_aux,plano}
mom ente_cale(forea,dir,spin,span,.spun)
m otor _control(torquel ,torque2. torque3)

G

Figura 35 — Fluxograma da fung¢fio Choque2



51

CalculaDirecfio: fun¢fio responsivel pela representagio da ferramenta, ela
calcula a direcfio que a ferramenta virtual estd apontando.

Malha: sub-rotina da fungfio choque2, é responsivel pela verificagiio da
ocorréncia do choque entre a ferramenta e uma determinada area do plano. Ela
identifica o elemento no qual ocorre o choque e sua respectiva constante de elasticidade.
A partir desses dados e da penetragio calculada, essa fungo calcula a forga aplicada
sobre a superficie.

Momento_calc: outra sub-rotina da fungfio choque2, ela calcula o torque
aplicado pelos motores, a partir do modelo dindmico.

Motor_control: fungfo calcula a voltagem necessaria para gerar o torque nos

motores, além de enviar o sinal de controle

54.6 MODULO GRAFICO
Deformacio de superficies via “Splines” ou “Curvas de Béziér”

Esta solugdio propde a renderizagio de uma superficie de Bézier a partir de
“pontos de conirole”, que sdo pontos que niio necessariamente pertencem 3 superficie,
mas definem a curvatura da mesma. O OpenGL oferece amplo suporte para a
modelagem de curvas e superficies de Bézer, privando o usuério até da matematica
envolvida na defini¢do dos mesmos. Para uma curva simples, por exemplo, definem-se
trés pontos para uma curva de Béziér de segundo grau e quatro pontos para uma curva
de Béziér de terceiro grau, estes dois sendo os mais comumenie utilizados em
computagio grafica Esta é uma vantagem do ponto de vista computacional, ja que ndo ¢
necessario o processamento e armazenamento da posigio de todos os pontos da
superficie em cada instante de tempo, que demandaria um poder computacional bastante
elevado, porém esta caracteristica mostra-se como uma desvantagem, por ser necessario
definir posi¢bes de pontos em lugares ndio pertencentes 4 curva ou superficie para fazer

com que a superficie passe por um ponto especifico no espago.



52

l Control
» 5
,
\ Final'®

|

| “» |nitial

Figura 36 — Curva e superficie de Béziér e seus pontos de controle

Manipulacéio direta de malhas poligonais

Por mais variadas que sejam as técnicas de modelamento geométrico, seja por
fungdes quadraticas, paramétricas (splines) ou outras, elas usam todas saidas na forma
de pontos formando poligonos e malhas de poligonos.

Pode-se, por exemplo, renderizar rapidamente malhas criando estruturas de
dados para estes pontos, utilizando algoritmos que podem ser implementados facilmente
a partir destes dados. E o caso da digitalizagio de um objeto fisico através de
equipamentos de captura de coordenadas. A malha gerada representa exatamente o
dado, limitada pela precisiio do medidor que foi utilizado.

A manipulagfio direta destes pontos é a solugfo para problemas de modificagio
da forma de superficies em pontos determinados. Pode-se tratar cada vértice da estrutura
independentemente, e incorporar fungdes de modificagfio para estes conjuntos de
pontos, de forma que se consiga manipular estes dados de maneira controlavel e
flexivel.

A seguir demonstra-se através de um programa simples em OpenGL como isto

ocoITe,



Figura 37 — Deformagio da malha atraves de deformacsio direta

33



54

6 RESULTADOS

A seguir apresentam-se algumas imagens do simulador desenvolvido. Na tela

sdo exibidas as coordenadas da origem da ferramentia e as coordenadas do ponto fixo.

Figura 39 — Deformagéo do érggo pelo contato com a ferramenta




Figura 40 — Rotagfo de cdmera

Figura 41 — Rotagfo de cimera

55




Figura 42 - Mouse com retorno de forgas

56




57

7 CONCLUSOES

Com a integragfio de todos os componentes descritos nos capitulos anteriores,
obteve-se o simulador grafico de cirurgias minimamente invasivas com uma mnterface
de retorno de forgas sobre 0 mouse do departamento,

E importante salientar que as fun¢des geradas sdo modularizadas, o que permite
a sua adaptaggo a outros tipos de dispositivos de entrada e saida, bastando apenas alterar
alguns pardmetros dos seus médulos. Os médulos matematicos podem ser totalmente
mantidos.

O médulo de deteccdio de choques apenas contempla colisdes de cilindros com
planos. Para uma aplicagfio voltada & simulagdo de colisio com orglos virtuais, &
necessério desenvolver rotinas de colisdo com outros tipos de solidos, por exemplo
outros cilindros, esferas, além de outras primitivas graficas.

Como era esperado, o sistema n3o mostrou sensibilidade suficiente para

transmutir os torques de forma gradual e suave. Isso decorreu por diversos fatores:

* Os acionamentos consistiram de motores DC e redutores acoplados de
baixa qualidade. Sua inércia é muito grande, o que limita a sensibilidade

de saida do mesmo em baixas voltagens.

* O mouse espacial possui um desalinhamento de montagem do eixo das
engrenagens dos bragos, o que fez com que a correia do motor 2 ficasse
com folga excessiva e a correia do motor 1 ficasse excessivamente
tensionada. Como resultado, 0 motor 1 s6 ¢ acionado quando se aplicam
altas voltagens na sua entrada e o motor 2 gira em falso até conseguir

tensionar suficientemente a correia e transmitir 0 movimenio.

¢ As correias de transmissio foram mal dimensionadas, o que requer for¢a

adicional para dobra-las, o que gera ainda mais inércia no sistema.

¢ As articulagbes apresentam folga excessiva, o que prejudica a medigfio

dos angulos pelos potencibmetros.

Outro problema detectado no dispositivo de retono de forcas foi no

acionamento do motor DC. Mesmo quando o sinal de controle era zero, a carga do



58

motor apresenta uma voltagem de 0.5 V, 0 que acaba aumentando ainda mais a
resisténcia do sistema a0 movimento.

Os potencidmetros foram uma solugfio pratica e barata de capturar a posigio do
mouse espacial. Uma conseqiiéncia do uso deles foi a falta de precisdo nas medidas e
alguns saltos de tensdo de saida nos transit6rios que provavelmente decorrem do atrito
com a bobina interna. Para estabilizar o sinal foj preciso implementar solugdes que
incluiram o calculo da média de diversas capturas de posigdo e o truncamento de valores
medidos na segunda casa decimal. O uso de encoders 6pticos eliminaria este problema e
fornaria o simulador muito mais preciso, uma vez que desta maneira pode-se eliminar o
calculo da média, que faz com que a freqiiéncia de amostragem caia nesta razio, 0
problema desta implementacio seria o custo, bastante elevado.

O encoder a ser utilizado deve ser do tipo absoluto, j4 que o sistema ndo faz o
acompanhamento do sinal de entrada dos sensores de forma continua. O risco de perder
passos nestas condigSes ¢ elevada, o que impossibilita o uso de encoders incrementais.

Outro problema relacionado a0s ruidos detectados est4 diretamente relacionado
com a fomie de tensdo. Por ser utilizada apenas uma fonte para alimentar os
potenciémetros, o driver de poténcia e 0s motores, este compartilhamento da fonte para
os circuitos de controle e de poténcia acaba gerando oscilages de tenso nos sinais de
leitura. Isto foi detectado ligando-se e desligando-se o circuito de poténcia durante a
execucdo do simulador. A solucdio ideal para o sistema seria utilizar circuitos de
poténcia separados, como por exemplo através de um conirole PWM dos acionamentos,
e chaveamento do driver através de relés Opticos, o que separa claramente o sinal de
conirole dos valores de poténcia, o que elimina estes ruidos.

O computador utilizado para desenvolver o trabalho n#o foi o ideal para fazer
um bom uso dos recursos graficos oferecidos pelo OpenGL e ndo ajudou a minimizar os
saltos de medigio. O uso de um computador com maior poder de processamento, aliado
a0 uso de uma placa aceleradora de video possibilitaria a implementagiio de recursos
adicionais, como texturas reais de pele, um detalhamento melthor da ferramenta, a
renderizacic do ambiente virtual em tela total, o que melhoraria consideravelmente a
qualidade da apresentaciio do trabalho, uma vez que esta saida & efetivamente o que o
usuario observa quando da execucdo do programa. Velocidades maiores de

processamento também possibilitariam uma maior freqiiéncia de amosiragem pela placa



59

de aquisi¢fio, o que melhorariam a precisdo de leitura e conseqiientemente a saida de
tens&o para os motores poderia ser melhor controlada,

No primeiro semestre de 2001 foram requisitadas as pegas para a montagem do
acionamento da base, Como elas foram s6 foram entregues pelo Sr. Walter de Britto no
dia 22/11/2001 (nove dias antes da apresentacio), sua utilizag#o ficou comprometida
devido ao prazo para a entrega dos resultados.

Em relagio ao software, o controle dos acionamentos esta pronto, faltando

apenas a implementagfio fisica do terceiro motor.



60

8 MANUAL DO USUARIO

A seguir apresenta-se o manual do usudrio do simulador.

8.1 INSTALACAO DO HARDWARE

O hardware do simulador compde-se de:
* Mouse espacial;

® 2 (duas) fontes de alimentagio:
o A:Terrae+5VDC
o B:-15Ve+i5v

® Driver de poténcia para os motores;

¢ Placa de aquisicio CAD 12/36 da Lynx Tecnologia.

Deve-se alimentar os potenciémetros com a fonte A € o driver de poténcia com a
fonte B.

Conectar os motores nas safdas do circuito de poténcia (Outl para o motor 1 e
Out 2 para o motor 2). Ligar o terra do circuito de poténcia ao terra da fonte.

Conectar a placa de aquisi¢io com o equipamento através do cabo com conector
DB-37disponivel da seguinte maneira:

Pino 8: Sinal de entrada do potenciémetro 1 (Verde)

Pino 9: Sinal de entrada do potencidmetro 2 {Amarelo)

Pino 11: Sinal de entrada do potenciémetro 3 (Roxo)

Pino 24: Terra (Referéncia da placa de aquisigfio)

Pino 23: Sinal de controle do motor 1 (conectar na entrada In 1 do circuito de
poténcia)

Pino 5: Sinal de controle do motor 2 (conectar na entrada In 2 do circuito de

poténcia)



61

8.2 INSTALACAO DO SOFTWARE

No micro com a placa de aquisicsio instalada, a biblioteca GLUT32.DLL deve
estar instalada no diretorio \Windows\System

8.3 EXECUCAO DO PROGRAMA

Ao iniciar o programa, ele ir4 exibir uma tela pedindo para posicionar o mouse

na posigio 1.

* Posicione 0 mouse com a ponta encostada na marca direita sobre a base,
de maneira que a haste da base esteja paralela 20 plano da base, a seguir
a haste da ponta deve ser levantada ao maximo, mantendo a haste da base

paralela ao plano da base.

s Tecle <enter>

O programa ir4 pedir para colocar o mouse na posi¢do 2:

* Posicione 0 mouse com a ponta sobre a ponta da haste de madeira a

esquerda do mouse.

* Tecle <entre>

O programa sera inicializado, com a tela de simulagio.

8.4 COMANDOS DO PROGRAMA

O programa possui diversos comandos que mudam a posigio da cimera e a
posi¢do do ponto fixo, permitindo uma melhor visualizagio da imagem e uma maior
interagdio com o simulador:

W: Move o ponto fixo no eixo ¥ no sentido positivo

S: Move o ponto fixo no eixo ¥ no sentido negativo

A: Move o ponto fixo no eixo x no senfido negativo

D: Move o ponto fixo no eixo x no sentido positivo



62

Home: Rotaciona a cdmera no eixo x no sentido negativo
End: Rotaciona a cimera no eixo x no sentido positivo
Delete: Rotaciona a cAmera no eixo y no sentido negativo
Page Down: Rotaciona a cimera no eixo y no sentido positivo
Insert: Rotaciona a cimera no eixo z no sentido negativo

Page Up: Rotaciona a cimera no eixo z no sentido positivo
F1: Retomna a cAmera 4 posigfo inicial

Esc: Sai do programa



63

9 BIBLIOGRAFIA

Vidal Filho, W. B.; Moscato, L. A ; Lima, R. G. - Development of a “spatial” interface
for surgery simulator - Induscon’98; Sio Paulo

Buttolo, P.; Oboe, R ; Hannaford, B. Architectures for shared haptic virtual
environments - Comput. & Graphics, Vol, 21; No. 4; pp. 421-429; Gra-Bretanha:1997

Yagel, R.. et al. Building a virtual enviromment for endoscepic sinus surgery
simulation - Comput. & Graphics, Vol. 20; No. 6; pp. 813-823; Gré-Bretanha; 1996

Iwata, H.; Yano, H.: Hashimoto, W. LHX: an integrated software tool for haptic
interface - Comput. & Graphics, Vol. 21; No. 4; pp. 413-420; Gra3-Bretanha; 1997

SensAble Technologies, Estados Unidos, Apresentac¢io da descricdo de Phantom ¢
seus similares. Disponivel em <htip//. www.sensable.com>. Acesso em: 05 de Maio.
2001

twata Lab ~ HapticMaster, Japdo, Apresentagio da descricio do Haptic Master.

Disponivel em < http://intron. kz.tsukuba. ac. jp/HM/txt html>. Acesso em 10 de Maio,
2001,

Melco, T. C. Desenvolvimento de um apontador espacial, 1°. relatério; Sio Paulo;
2000

Camargo, E. D. Desenvolvimento de programa para aquisigiio de dados e controle -
1° Relatério; Sao Paulo; 2000

Lynx Tecnologia Eletrénica Ltda. Manual do usuirio e de Referéncia do conversor
A/D e D/A para microcomputadores CAD12/36; Sao Paulo, 1997



64

Hashimoto, W.; Iwata, H A Versatile Seftware Platform for Visual/Haptic

Environment

Woo, M. et al. The OpenGL programming guide: the official guide to learning
OpenGL, version 1.1 - Addison-Wesley Publishing Company, Estados Unidos; 1999

Wernecke, J. The Inventor Mentor : Programming Object-Oriented 3D Graphics
With Open Inventor, Release 2; Open Inventor Architecture Group

Camargo, E. D; Desenvolvintento de programa para aquisiciio de dados e controle —
Relatério Final; S&o0 Paulo; 2001

Moriya, K.; Souza, L. F. A. Sistema de controle de um mecanismo de
posicionamento no plano horizontal. Sio Paulo, 1998, 77p. Trabalho de Formatura,

Escola Politécnica, Universidade de Sdo Paulo.

National Semiconductor Corporation. LM12CL S0W Operational Amplifier,
Japdo,1999.

NeHe Productions (OpenGL). Estados Unidos. Apresenta informacdes e discussio
sobre computagiio grafica. Disponivel em: <n¢he. gamedev.net>, Acesso em: 17 de
Jun. 2001

Allan, J.B.; Wwvill, B; Witten, I. H A METHODOLOGY FOR DIRECT
MANIPULATION OF POLYGON MESHES; Computer Science Technical Reports,
Department of Computer Science, The University of Calgary, Alberta, Canada

Dionisio, J. et al. The virtual touch: Haptic interfaces in virtual environments.
Comput. & Graphics, Vol. 21; No. 4; pp. 459-468; Gri-Bretanha;1997.

Web3D Consortium, Estados Unidos. Apresentaciio sobre 0 VRML. Disponivel em:
<www.vrml.org>. Acesso em: 5 de Maio, 2001



65

Boulos, P.; Camargo, I. Geometria Analitica — Um Tratamento Vetorial ; Makron
Books, Séo Paulo, 1987.

Malvino, A. P.; Eletrénica — Quarta Edi¢do Vol.Il; Makron Books, Sio Paulo, 1997.



66

ANEXO 1

Arquivo simulador_final.cpp

/*1*:1********ﬂ###tttt***tt****#t*t*t#!tt**tI=*****l******************

PMC-592 - Simulador cirtirgico - versiio final

Henrique Miyamoto
Humberto Nomura Nishizaki

Observactes gerais
* As medidas fisicas usadas sfio; cm, N e radjanos
* [Matriz_k] = [N}/m]

*********tl*********t***t******t*******ttt****at******tttt#*t!***t***lf

f* jfersrrree As medidas fisicas usadas sfio; em, N e radianos
Matriz_k: N/m
*f

Jrerkstrnnik Bibliotecas basicag FHFEFEEEEERR BB RIRERRRRREERERRHEFH K

Hifdef WIN32
#include <windows. b>
Hendif

#include <GL/gl.h>
#include <GL/glu.h>
#include <GI/glut.h>

#include <stdio h>
#include <math. h>

#include <stdlib.h>
#include <conio.h>
#include "material h"

/]*t*t*tt*t* Deﬁﬂjcﬂes de Constmtes dO Pl'ograma Fddk koK Rk R xRk

#ifndef M_PI /f Alguns math.h nao definem o pi=3.14159...
#define M_PI 3.14159265358979323846

#endif

#define RADDEG 57.2957795130823208768463  // Conversao Rad -> Graus

#define DEGRAD 0.01745329251994 /f Conversao Graus -> Rad

//*********4 Deﬁm‘;ﬁes da Placa FREEEEERREEEREEERERRER AR R DR R R R R R R kk

#define EndBase 0x0380 {/f Endereco base da placa

// #define L 15 /

/] #define p 15.8 #/ Cuidado! mesmo nome da variavel do text()
#define pot 3 // Numero de potenciometros

fidefine G1  0x70
#define Bip 0x80
#define size k 10 // Tamanho da matriz de coeficientes de elasticidade ( 10/10/2001)



67

H#pragma intrinsic (oufp(unsigned short port, int databyte));
#pragma intrinsic (inp(unsigned short port));

[[rEEEsEESRRRRES Varidveis para a aquisigio pela placa **#astknnrtns
int vai[3],
1,
media=20 .
marca=0,
precisao;
float leiturafpot],
tensac 3],
constantes[&],
zera[pot],
valor{12],
medant 1},
tenant[1],
vant;
i apont_l2 = 1.5,
i apont_13 = 1.75;

//t***i**i*t*tt* F]m Vm-iaveis da placa Aok s ook ook oleok e ol sk ok ok akokeok ek o sk ek

I/**l**#t******* VaIiaVBiS Choque LR L Ll S e YT ]

GLfloat ponto_fixo{3], // Ponto de entrada no corpo do paciente

origem_raio3], // Ponto de origem da ferramenta (mao do medico)

plano[16], // Parametros da equacao parametrica do plano + coordenadas
dos vértices (4) ( 10/10)

dirf3], /f Vetor direcao da ferramenta

ponta_aux[3], /f Extremidade da ferramenta

penetracao, /f Profundidade de penetracao ( 09/10/2001)

forca, // Variavel com o modulo da forca ( 10/10/2001)

matriz_k[size k-1][size_k-1], /f Matriz ¢/ os coeficientes de elasticidade
(Ansys) ( 10/10/2001)

torquel torque2,torque3, // torque para cada um dos motores

ponto_prox[11], /f Variavel que contem as coordenadas do ponto (xy.z,
deltal delta? linha e coluna)

malha_aux(size_k][size k*3], // Matha discretizada

byte_al byte_bl.byte_a2,byte b2,byte_a3,byte_b3, /f Bytes dos motores (
06/11/2001)

k_matriz; // Variivel com o k da malha

int choque f=0;
float t_min_global;
Mint  size k; // Tamanho da matriz k ( 10/10/2001)

/j********t**** Flm variaveis choque Fededok ok ok ke kdoR Mok R R Rk kR ek Kk

//*Ik**t-i*tttt#t Variaveis cmemﬂtica invef‘sa e e 3 ook o o e o o ol e ook ok o ook okl ok

# &ngulos finais em graus medidos pelos potencidmetros
GLfloat spin,

Span,
spury;



68

/‘I**ﬂ#******!t* Finlvariaveis cinematica hwma HEFRERERERRERRERER RN

I’*!*xtt*tti!!*** VaIléVelS graﬁcas e e e e ook e o it ol ol o o ol ok o OB ek R o o ek ko

GLuint listaFerramenta, // Valor inteiro que identifica unicamente a lista fertamenta

listaEsfera, /f Valor inteiro que identifica unicamente a lista Esfera

listaFsferaFixa,

listaPele, // Valor inteiro que identifica unicamente a lista Pele

listaFixos; // Valor inteiro que identifica unicamente a lista Eixos
GLfloat tamanho=30, /1 Tamanho da ferramenta

rotz=0, // Rotacao em tomo de z

roty=0, /f Rotacao em tomo de y

coord_int{4]; /f Vetor de coordenadas intermediarias
GT.UguadricObj *qobj; // Cria um novo objeto GLUquadric ¢ retorna um apontador para ele
{cap 11)
char s[300]; {/ Comprimento do vetor de caracteres da rotina text

{f Algumas variaveis da malha do orgao
#define MAX_MESH 10 /f Tamanho da maiha do orgao
Gl.float mesh{MAX_MESH]|[MAX MESH},

float dist_global=0;

float camx=0.0, camy=0.0, camz=0.0, /f Angulos da camera

{f&#*******#t**l’* Flm VaIiaVeiS graﬁcas s ek kR ok koK ok ok Rk kR kR

float voltl volt2,volt3;

//***#***#*****' Deﬁnicao dﬁs ﬁmcoes SERkERREREERRERRRREREREEREERE

float Leitor(char canal);
void leia();

void Inicializa(void);
void Calibra(veid),

static void init(void),

void text(int x, int y, char® s);

void display(void);

void reshape(int w, int h);

void keyboard(unsigned char key, int x, int y),

double prod_escalar(float refi[1], float ref2[], int tam),

void calculaDirecao(void),

void choque2(float ponto_fixo[], float origem_raio[], float plano[],float tamanho),

void rotacac(float dir[]);

void malha(float pto_contato[].float plano[]);

void anime(void),

void momento_cale(float forca,float dirf],float spin, fleat span, float spun);

void motor_control(float torquel, float torque2, float torque3); /f 06/11/2001
float arredondamento(fioat num, int casas); /f 14/11/2001

/I#***##**i**t*t Fim deﬁnicm das ﬁlnCOBS FES RIS RS R R P2 R 22 Lt 22 2 22



‘{‘,‘**t*t#ttlltttt##****$$#t**t*l‘ttttltlt-‘l*1*“*i*t*********************#t

//‘#*tt**‘***!*l Flm?ﬁes de ]elmra da placa Rk kkdokkk Rk ik kR ke dok
,/t******#**tt**#*###*#****#******’B***#**‘I##********1************#*tt

// Funcao LeltUIa a5 2o e e e o o ol e ke ol o s e ok o ol ol s ok o ool ol ke o ok ok o ok e R A R o ko R

float Leitor(char canal)

{
int a;
outp (EndBase+4, 2);
outp (EndBase+5, canal);
do

{

a = inp(EndBase+3);
} while ((a & 0xz0001) == 0Y;
a = inp(EndBase+4),
a = a + (inp(EndBase+5)<<8);

return (a),

l/ FUIICB.O LBIa a8 e e 30 o e o 6 3 s o o e e o o o o ok e e e e sk sl ol ol o ool etk ek ok B K ok R R OR R R Rk R ok

void leia()
{
int I;
for 1=0;1<pot; [++)
{
leitura[I] = Leitor(l),
tensao[I] = 10*leitura[I]/32768;
}
outp(EndBase+4,1); // zerar o ponteiro
outp(EndBase+5,0); // dos canais.
}

/f Funeao de inicializacac da placa de aquisicap *#*¥** ¥ ¥kkakdrrkrex
void Inicializa{void)
{

int aux, canal;

/f rotina ModoZero
outp(EndBase+4, 3Y; /1 poe no byte do registrador de
outp(EndBase+5, 0%, // modo (3) tudo 0.

/f rotina ProgramaMemoria
outp(EndBase+4, 0); I/ registrador de Limite recebe
outp{EndBase+5, 15); / maximo de 16 canais. 0 - 15

for {canal = O, capal<pot ; canal++)

{
outp (EndBase+4, 1); /! armazena o canal & ser lido (0)
outp (EndBase+5, canal); / no ponteiro para memoria(1).
outp (EndBase+4, 4), // armazena o tipo de dado no
outp (FndBase+5, Bip|G1|canal), // endereco de escrita em memoria.

H

/{ rotina AutoCalibrar



}

outp (EndBase+4, 6),  // realiza a calibracao colocando qualquer
outp (EndBase+5, 0),  // valor (0) no comando para auto-calibracao.
Sleep(1000);

/f rotina EsvaziarFifo
outp (EndBase+4, 5);  // esvazia a Fifo(35) escrevendo
outp (EndBase+5, 0);,  / qualquer valor(0) nela.

outp(EndBase+4,1); // zerar o ponteiro
outp(EndBase+5,0); /1 dos canais.

// realizacao da primeira leitura, esta nao interessa.
for (canal = 0; canal<pot ; canal++)
{

outp (EndBase+4, 2);

outp (EndBase+5, canal),

do

{
aux = inp(EndBase+3),
} while ((aux & 0x0001) == 0},
Sleep(20Y;
aux = inp(EndBase+4),
aux = aux + {inp(EndBase+35)<<R);

}

// fim da funcao

outp(EndBase+4,1); /I zerar o ponteiro
outp(EndBase+5,0); // dos canais.

/! Funcao Calibracao *¥F*¥*s s ks s st s b bid s ahs oS bEE R b L5 TR HE R

void Calibra(void)

{

float teta[pot][2], aux_tensao[pot];

oufp (EndBase+8, 0);

outp (EndBase+9, 0);

outp (EndBase+190, 0);
outp (EndBase+11,0);
outp (EndBase+12, 0);
outp (EndBase+13, 0);
teta[ 0] 0]1=30*DEGRAD;,
teta[ O][ 1]=90*DEGRAD;
teta[ 1][0]=0*DEGRAD,
teta[1][1]=40*DEGRAD;
teta{ 2][0]=50*DEGRAD;
teta[2][1]=130*DEGRAD,
printf("Cologue o apontador na posicao !\n\n"),
getch();

leia();

aux_tensao[(] = tensao[0],
aux_tensaof1] = tensao[1];
aux_tensao[2] = tensao[2];
printf{"Coloque o apontador na posicao 21");
getch(),

leia(};

constantes[Q] = (teta[0][1] - teta{0][0])/(tensao[0] - aux_tensao[0]);
constantes]1] = teta[O][0] - aux_tensao[0]*constantes[0];

70



71

constantes[2] = (tetaf1][1] - teta[1][0])}/(tensao[1] - aux_tensao|17]);
constantes{3] = teta[ 1][0] - aux_tensao[ 1 ]*constantes|2];
constantes[4] = (teta[2]{1] - teta[2][0])/(tensao|2]} - aux_tensao|2]);
constantes[3] = teta]2][0] - aux_tensao[2]*constantes[4];

}

//#***!l#******#*******##l***************#*****‘***l******t«i**#*#**#**
//***#*****t* Funcoes graﬁcas ¢ e e o e e o o0 ot o e e e el ool ok sl e o 3 ol ok ol Al R o ok R ok ok o
”********##**#*****t***t***i***t***#***#**t#*t**tttttttt*ttt**tt#t**

”‘ Fllncao de miclahzacao graﬁca ez el ks ek ek ok ok oksiok ok

static void init(void)
glClearColer(0.0, 0.0, 0.0, 0.0y, // cor de fundo negro
glShadeModel(GL_FLAT);, // Seleciona entre sombra simples (GL_FLAT) ou
suavizada (GL_SMOOTH)
glClearDepth(1.0); ] Especifica o valor do Depth Buffer quando este e limpo
glEnable(GL._DEPTH._TEST);  // Autoriza o teste de depth, utilizando o depth buffer
glDepthFunc(GL._T.ESS); /I Criterio de comparacao do depth test para desenhar o pixel
num dado z

glLightfv(GL_LIGHTO, GL_AMBIENT, LightAmbient); /l Especifica as config. de luz
ambiente (p/ LIGHT1)

glLightfv(GL._LIGHTO, GL_DIFFUSE, LightDiffuse); /! Especifica a cor da luz

glLightf(GI._LIGHTO, GL_SPECULAR, LightSpecular); // Especifica a cor de refracao da
luz

gliLightfw(GL_LIGHTO, GL_POSITION, LightPosition0);  // Especifica a posicao da luz

glLightfv(GL_LIGHT1, GL_AMBIENT, LightAmbient); /f Especifica as config. de luz
ambiente (p/ LIGHT1)

glLightfw(GL_LIGHT1, GL._DIFFUSE, LightDiffuse); / Especifica a cor da luz

giLightfv(GL_LIGHT!, GL._SPECULAR, LightSpecular), // Especifica a cor de refracao da
fuz

glLightf{(GL_1.IGHT1, GL_POSITION,LightPosition1}; // Bspecifica a posicao da luz

glLightf(GL,_LIGHT1, GL_SPOT_CUTOFF, 45.0),

glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction);

giMaterialf(GL,_FRONT, GL_SHININESS, mat_shininess); /I Configuracao do brihe do
material sob a luz

qobj = gluNewQuadric();

listaFerramenta = glGenLists (1), / GERACAO DE LISTA PARA FERRAMENTA
glNewList(listaFerramenta, GL._ COMPILEY;,
giMaterial f(GL_FRONT, GL_AMBIENT, mat_amb_prata);
glMaterialfi(GL_FRONT, GL,_DIFFUSE, mat_dif prata);
glMaterialfi(GL_FRONT, GL_SPECULAR, mat_spc_prata);
giMaterialfi(GL,_FRONT, GL_EMISSION, mat_emission_escuro),

glPushMatrix();
gluCylinder(qobj, 0.2, 0.05, tamanho, 15, 1),
glPopMatrix();
glEndList();
listaEsfera = glGenLists (1); // GERACAO DE LISTA PARA ESFERA

giNewlL ist(listalisfera, G COMPILE),
glMaterialfv(Gl._FRONT, GL_AMBIENT, mat_amb _amarelo),
giMaterial fv(GL._FRONT, GL_DIFFUSE, mat_dif amarelo);



}

giMaterialf(GL_FRONT, GL_SPECULAR, mat_spc_amarelo),
giMaterigl f(GL_FRONT, GL_EMISSION, mat_emission_escuro);

glPushMatrix();
gluSphere{qobj, 0.4, 15, 15),
glPopMatrix();
glEndList();
listaEsferaFixa = glGenLists (1), !/ GERACAO DE LISTA PARA ESFERA

glNewList(listaEsferaFixa,GL,_COMPFILE),
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_amb_prata};
giMaterialfu(GL_FRONT, GL._DIFFUSE, mat_dif prata),
giMaterialf(GL_FRONT, GL_SPECULAR, mat_spc_prata);
giMaterialf(GL_FRONT, GL_EMISSION, mat_emission_escuro);
glPushMatrix(),
gluSphere(qobj, 0.4, 15, 15);

glPopMatrix(),

glEndList();

listaPele = glGenLists(1);
giNewList(listaPele, GL_COMPILE);
gMaterialtv(GL,_FRONT, GL._AMBIENT, mat_amb_vermelho),
glMaterialfw(GL._FRONT, GL_DIFFUSE, mat_dif_vermelho},
giMaterialfv(GL_FRONT, GL_SPECULAR, mat_spc_vermelho),
glMaterial fv(GL_FRONT, GI,_EMISSION, mat_emission_claro),
glPushMatrix(),
glBegin(GL_POLYGON),
glVertex3f (plano[4],plano[5],plano[6]),
glVertex3f (planc[7],plano[8],plano[9]);
glVertex3f (plano[10],plano[ 11} plano[ 12]);
glVertex3f (plano|13],plano[14],plano[15]),
glEnd();
glPopMatrix(};
glEndList(),

listaFixos = glGenLists{1);
gINewList(listaFixos, GL,_COMPILE),
giMaterial(v(GL_FRONT, GL,_EMISSION, mat_emission_claro);
glPushMatrix(),
glBegin (GI,_LINES),
glVertex3f (-20.6, 0.0, 0.0),
glVertex3f (20.0, 0.0, 0.0);
glVertex3f (0.0, 20.0, 0.0);
glVertex3f (0.0, 20.0, 0.0);
glVertex3f (0.0, 0.0, -20.0);
glVertex3f (0.0, 0.0, 20.0);
glEnd (),
glPopMatrix(),
glMaterialfv(GL_FRONT, GI._EMISSION, mat_emission_escuro);
glEndList();

glEnable(GL_LIGHTING);
glEnable{GL,_LIGHTO);
glEnable(GL,_LIGHT1);

// Funcao de escrita de texto HFesssbh i nh bkt s adn bk dormn ok kil kkk s ko
void text(int x, int y, char* s)

{

72



73

int lines;

char* p;
glDisable(Gl,_DEPTH_TEST);
gIMatrixMode(GL_PROJECTION),

giPushMatrix();
glLoadldentity();
glMateriali(GL_FRONT, GL_EMISSION, mat_emission_claro);
glOrtho(0, ghutGet(GLUT_WINDOW_WIDTH), 0,

glutGet(GLUT_WINDOW_HEIGHT), -1, 1);
glMatrixMode(GL_MODELVIEW),
glPushMatrix();

glL.oadldentity();
glRasterPos2i(x, v),
for(p = s, lines = 0; *p; p++)
{
if (*p=="n)
{
lines++;
glRasterPos2i(x, y-(lines*18)),

3
glutBitmapCharacter(GLUT_BITMAP_HELVETICA_18, *p);

}
gIMatrixMode(GL_PROJECTIONY;

glPopMatrix(),
glMatrixMode(GL_MODELVIEW),
glPopMatrix();
glEnable(GL_DEPTH_TEST),
H
.” Funcao desenha Orgao e ok ke e ok e e o e o o s ke o ofe o o o o ol o e she e 3 ok K ORoR I ok R SR X
void desenhaOrgao(void)
{

int i, k, swap=0;
float dist_ponto_colisao, raio;

glPolygonMode(GL._FRONT, GL_LINE);
glPolygonMode(GL._BACK, GL_LINE),

raio=fabs(2 *penetracac);
giMaterial f(GI._FRONT, GL_EMISSION, mat_emission_claro),

for (k= 1; k <MAX_MESH-1; k++) {
for i=1;i<MAX_MESH-1;i++) {
if(chogue f==1)

{
dist_ponto_colisao=sqrt{(ponlo_prox[9]-k)*(ponto_prox[9]-

ky+(ponto_prox[ 10]-1)*(ponte_prox[10]-1));
dist_plobal = dist_ponto_colisao;
H

else

{
dist_ponto_colisao = 0,
raio=1;

if{ dist_ponto_colisao <= raio)

mesh[k]fij=penetracac*sin((1-dist_ponto_colisao/raio)*M_PI2)/3;



}
else
mesh[k][i] = 0.0;
H
H
glPushMatrix();
glBegin(GL_TRIANGLE_STRIP);
for (k = 0; k < MAX_MESH-1; k++)
{
if (swap)
for (i = MAX_MESI-1; i >=0; i-)
{
glVertex3{(i, mesh[k][i], k;
glVertes3f(i, meshfk+1][i], k+1);
if(i =20)
glVertex3 (i, mesh{k+1][i], k+1);
H
}
else
{
for (1 = 0; i < MAX_MESH, i++)
t
glVertex31(i, meshfk][i], k);
glVertex3f(i, mesh[k+1][i], k+1);
if (i ==MAX_MESH-1)
glVertex3f(i, mesh[k+1][i], k+1);
}
}
swap =1,
}
glEnd();
glPopMatrix(),

j/ Fuﬂcao dlSpla}’ - atuH]izado a cada 100]) ek o ot o e ke o ook ol ok ok Ak ok ok RO
void display(void)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT),
glPushMatrix(),

glTranslatef(5.0,5.0,0.0);

glRotatef(camx,1.0,0.0,0.0),

glRotatef(camy,0.0,1.0,0.0;

glRotatef(camz,0.0,0.0,1.0);

glTranslatef(-5.0,-5.0,0.0);

glPushMatrix();
giRotatef(-90.0,1.0,0.0,6.0);
desenhaOrgac(),

glPopMatrix();

glPushMatrix(),
glTranslatef(ponto_fixof0f, ponto_fixo[1], ponto_fixo[2]);
glCallList(listaEsferaFixa),

glPopMatrix();

glPushMatrix();
glTranslatef{origem_raiof0],origem_raio[1},origem_raio[2]);
glRotatef{rotz,6.0,0.0,1.0y;
glRotatef{roty,0.0,1.0,0.0);
glCallList(listaFerramenta),

74



75

sprintf(s,"x = %.2f y = %.2f z=%.2f\n\nx fixo = %.2f y fixo = %.2{ z fixo =
%.2{" origem_raio[0},origem_raio[ 1],origem_raio[2],ponto_fixo[0],ponto_fixo[1],ponto_fixof2]);
text(100,400,s);
giPopMatrix();
glPopMatrix();

glFlush();
glutSwapBuffers();

}

// Funcao reshape - executado no redimensionamento da janela ********
void reshape(int w, int h)
{
giViewport(0, 0, (GLsizei) w, (GLsizei) h);
giMatrixMode(GL_PROJECTIONY,
glloadIdentity();
gluPerspective(30, (GLfloat) w/(GLfloat) h, 1.0, 100.0};
giMatrixMode(GEL,_MODELVIEW),
glloadIdentity(),
gluLookAl(5, -20, 10, 5, 10,0, 0, 1, 0);

// Funcao keyboard - Captma teclado e 3k e o e 3 o o e ok e ol ok e ok o e ol ol o ok o O ke ok ek R
void
keyboard(unsigned char key, int x, int y)

switch (key) {

case 'a"
ponto_fixo[O]=ponto_fixo[0]-0.1;
break;

case'd"
ponto_fixo]0]=pento_fixo[{0]+0.1;
break;

case W'
ponto_fixo[1}=ponto_fixo[1]+0.1;
break;

case's".
ponto_fixo[1]=ponto_fixo[1]-0.1;
break;

case '+
ponto_fixo[2]=ponto_fixo[2]+0.1;
break;

case "
ponto_fixo[2]=ponto_fixo[2]-0.1;
break;

case 27:
byte_al=0;
byte_bl=0;
byte_a2=0,
byte_b2=0;
byte_a3=0,
byte_b3=0;
outp (FndBaset8, byte_al);
outp (EndBase+9, byte_bl);
outp (EndBase+10, byte_a2);
outp (EndBase+11, byte_b2),
outp (EndBase+12, byte_a3);



outp (EndBase+13, byte b3);

exit(0);
break;
case 127:
camy = camy-1;
break;
h
anime(),

}
void special_keys(int a_keys, int x, int y)

switch {a_keys) {

case GLUT_KEY HOME;
camx = camx-1;
break;

case GLUT _KEY END:
camx = camx+1;
break;

case GLUT_KEY PAGE_DOWN:
camy = camy+1;
break;

case GLUT KEY_PAGE_UP:
camz = camz-+1;
break,

case GLUT KEY INSERT:
camz = camz-1;

break;
case GLUT_KEY FI:
camx=0.0;
camy=0.0;
camz=0.0;
break;
case 127;
camy = camy-1,
break;
default:
break;
}
glutPostRedisplay();

// Funcao spinDlsplay ****************************#************’!‘*****
void spinDisplay(void)

int kk=0;
float aux_x,aux_y,aux_z; /1 14/11/2001

valor[1] = 0;
valor[5] = 0:
valor{9] = 0
for(i=0;i<media;i++)
{
leia();
valor[0] = tensao[0];
valorf4] = tensao[1];
valor[8] = tensao[2];



}

valor[1] = valor[1] + valor[0];
valor[5] = valor] 5] + valor[4];
valor[9] = valor{ 9] + valor[8];
kk+=1;

H

valorfl] = arredondamento(valor{ 1]/kk,1);
valor[5] = arredondamento(valor] 5)1/kk 1),
valor[9] = arredondalnento(valor[9]/l<k, 1y,

aux_x =({valor[1]*constantes[0] + constantes[1])),
aux_y = ((valor[5]*constantes{2] + constantes{3]));
aux_z = {(valor[9]*constantes[4] + constantes[5])),

spin=aux_x;
Span=aux_y;
spun=aux_z.

origem_raio[0]=1 O+arredondamento((3+1 S*cos{span)y+1 8*cos(span-spin))*sin(spun),2);
origem_raiof1 |=5+arredondamento((3+15*cos(spart)+1 8*cos(span-spin))*cos(sptm),2);
origem_raio[2|=arredondamento(8+7+1 5*sin(span)+1 8*sin(span-spin),2);

I/ It*llt*##*l*t1***1***#*******1***1**&******#*******#t*tt**#****ttt*

// La s P e Ty Flmcoes geometricas ##tt*tt’*lﬁ#**l******!l**‘*t***t*t*
// tt*t**-tttt***t1t*1(11!ti*!*******!******#****1********3****#*‘*****!

// chao prod escalar t*t***t*******t*#¥l*i#t-‘l****************tit**l

double prod_escalar(float refi {1, float ref2(], int tam)

{

double resp;
int 1

resp=0,

for (i=0;i<tam;i++)
resp=refl{i]*ref2[i]+resp;

retum(resp);
¥
// Flmcao CalculaDireCﬂo **lt*ll*tt***t**-‘l**l***!\'*******t******#*l****
void caleulaDirecao(void)
{
int i;
double aux_mod:
float mod_dir;
#f Céleulo da diregiio

for (i=0;i<3;i++)
{

dirfi]=ponto_fixo]i] -origem_raio[i];

aux_mod=dir[O]*dir[0]+dir[ 1]*dir[1 J+dir]2]*dix] 2],
mod_dir=sqrt(aux_mod);

77



78

for (i=0;1<3;i++)
dur{i}=dir[i}/mod_dir;

}

/! Funcao choqueZ LRl L L ST EEE LS L B L B g g g —
void choque2(float ponto_fixof], float origem_raio[], float plano[],float tamanhe)
{

float xn[3), ponta{3], t_min, auxI;

int i;

choque f=0,
marca=marca+1;

i calculaDirecao();
// Céleulo do t min para ocorrer ¢ choque

xnf0]=plauo[0];
xn[ I]=plano{1];
xnf2]=plano[2];
aux1=prod_escalar(xn,dir,3);

/f Fim do célculo do tamanho minimo

if (aux1==0)

{

i (" Paralelon™)
penetracac=0,
byte_al=0,
byte bi=0;
byte_a2=0;
byte b2=0;
byte_a3=0;
byte_b3=0,
outp (EndBase+8, byte_al);
outp (EndBase+9, byte bl),
oulp (EndBase+10, byte_a2),
outp (EndBase+11, byte b2);
outp (EndBase+12, byte_a3),
outp (EndBase+13, byte_b3);
voltl=voli2=volt3=0,

t_mjn=fabs((-plano[3]-prod_escalar(xn,origem_raio,3))/(prod_escalar(xn,dir,3)));
t_min_global =t min;

if(t_min<=tamanho)

{

I " Ocorren choque por tamanho minimo
for (i=0;1<3;i++)
{
ponta[i]=origem_raio[i]+tamanho*dir{i];  // Ponta real da ferramenta

ponta_aux|i]=origem_rajo[i]+t_min*dir[i]; # Ponto de contato no
plano



}

// Funcao rotacao i****************t*!Nl***#***********#************##

void rotacao(float dir{])

t

else

float Tz[16];

}

{/ Caleulo da penetragfo ( 09/10/2001) {10/10/2001)

penetracac=arredondamento({tamanho-t_min,3),
matha(ponta_aux plano),

if(choque_t==0)
{

penetracac=0,

byte_al=0;

byte_bl=0;

byte a2=0,

byte_b2=0);,

byte_a3=0;

byte_b3=0;

outp (EndBase+8, byte_al),
outp (EndBase+9, byte_bl);
outp (EndBase+10, byte_aZ);
outp (EndBase+11, byte_b2),
outp (EndBase+12, byte_a3);
outp (EndBase+13, byte_b3);
voltl=volt2=volt3=(;

momento_cale(forca,dir, spin,span,spun);
motor_control(torquel, torque?, torque3 ),

penetracac=0;

byte_al=0;

byte_bl=0;,

byte_a2=0;

byte_b2=0;

byte_a3=0;

byte_b3=0;

outp (EndBase+8, byte_al);
outp (EndBase+9, byte_bl);
outp (EndBase+10, byte_a2);
outp (EndBase+11, byte_b2};
ouip (EndBase+12, byte_a3);
outp (EndBase+13, byte_b3);
voltl=volt2=volt3=0;

if(dir[0]==0 && dir{1]==0 && dir{2]==0)
rotz=roty=0,
else if (dir[0]!=0 && dir] 1]!=0 && dir{2]==0)

79

/K 26/10/2001)
/ 06/11/2001



/f novo!

if (dir[0]>0 && dir[1]>0)
totz=abs(atan(dir{1]/dir[0)) 'R ADDEG);
if (dir{0]<0 && dir{1}>0)
rotz=180-abs(atan(dir] 1 }/dir[0)) *RADDEG);
if (dir[0]<0 && dir[1]<0)
rotz=180+abs(atan(dir[ 1 /dir[0] *RADDEG);
if (@ir]O]>0 && dir[1]<0)
rotz=-abs(atan(dir[1)/dir[0])*RADDEG),

}

else if (dir[0}!=0 && dif1]==0 && dir{2]1=0)
roiz=0;

else if (dir[0]==0 && dir{1]!=0 && dir[2]!=0)

if(dir]1]>0)
Totz=-90;
else if (dirf1]<0)
otz=90;
3
else if (dir[0]==0 && dir[1]==0 && dir[2)1=0)
Totz=0,
else if (dirf0)/=0 && dir[1]==0 && dir[2]==0)
rotz=0;
else if (dir]0]==0 && dirf1)1=0 && dir[2]==0)
{

if (dir]1]>0)
Totz=90),

eise if (dir[1] < 0)
rotz=-90;

}
else if (dirfO]!=0 && dir[1]!=0 && dir]2)!=0)
{

if (dir[0]>0 && dir[1]>0)
rotz=abs(atan(dir[1)/dir[0])*RADDEG);
if (dir[0]<0 && dir[1]>0)
rotz=180-abs(atan(dir[ 1 //dir{0]}*RADDEG);
if (dir[0]<0 && dir{1}<0)
rotz=180+abs(atan(dir[ 1 [/dir{0])*RADDEG);
if (dirf0}>0 && dir[1]<0)
rotz=abs(atan(dir[ 1)/dir[0]**RADDEG),

# Rotacao do sistema de coordenadas

/1 Preenchimento da matriz

Tz[0]=cos(-rotz*DEGRAD);
Tz{1]=-sin(-rotz*DEGRAD;
Tz2]=0,

Tz[3]=0;
TZ{4]=sin(-otz*DEGRAD);
Tz} 5]=cos(-rotz* DEGRADY,
Tz[6]=0;

Tz 7]=0;

Tz 8]=0;

Tz[9]=0;

TZ[10]=1;



TZ{11]=0,

Te[12]=0;

Tz 131=0;

Tzf14]}=0;

Tz{15)=1;

coord_int{0j=Tz[0] *dir[O]+Tz[1] *dir[1]+T2[2] *dir[2]+TZ[3]*1;
coord_int] 1]=Tz[4]*dir[1]+Tz{5] *dir{1]+T2[6] *dir]2)+T2{7]*1;
coord_int{2]=Tz[8] *dir{Of+T2[9]*dir[1 I+Tz[10]*dirf2] +T2[11]*1;
coord_int[3}=Tz|1 2]*dir[0]+Tz{13] *dir[1]+T=z{14] *dir[2]+Tz[15]*1;

/f Caleulo do roty

if{coord_int[0]==0 && coord_int[2]==0)
roty=0,

else if (coord_int{0]!=0 && coord_int[2]==0)

{

if (coord_int[0]>0)
roty=90,
else if (coord_int[0]<0)
roty=-90,
H
else if (coord_int[0]==0 && coord_int{2]!=0)
{

if (coord_int[2)>0)
roty=0;
else if (coord_int[2]<0)
roty=180;
}
else if (coord_int[0]!=0 && coord_int{2]!=0)
{

if(coord_intf0]>0 && coord_int[2]>0)
roty=90~abs(atan(coord_int[2]/coord__int[ O]*RADDEG);
else if{coord_int[0)<0 && coord_int[2]>0)
roty=-90+abs(atan(coord_int[2]/coord_int[O])*RADDEG);
else if{coord_int[0]<0 && coord_int[2]<0)
roty=-90-abs(atan(coord_iut{z]/coord_int[OJ)“RADDEG);
else if{coord_int[0]>0 && coord_int[2]<())
roty=90+abs(atan(coord_int[2]/coord_int[O])*RADDEG);

l/ Funcao malha '*t**"***********************‘**'*’kt***" Fkkkkkhk ( 2]/1 1/2001)
void matha(float pto_contato[],float plano[])
{

int Iinha,coluna,aux,coluna__aux,i;

float deltal [3].delta2]{3],perimetro,vetor1 [3).vetor2[3],vetor3] 3], vetord[3];
float prodl -prod2.prod3,prodd.per_calc;

float prodS,prodé,prod?,prodS,modl ,mod2;

float x1 yLzl dif tam_] Jlam_2.tam _3,tam_4,

// Variacao ao longo da linha

deltal {01=(plano{7]-plano[4] Y(size k-1);
deltalfl ]=(p1ano[8]~plano[5])/(size_k— 1y
deltal[2]=(plano[9] -planof6] ) (size_k-1);



82

] variacao ao longo das colunas

delta2f0}=(plano[13]-plano[4] /(size k-1);
delta2f1]=(plano[14]-plano[5] /(size k-1);
delta2[2]=(plano[15]-plano[6])(size_k-1);

/] Perimetro

perimetro=2*sqrt(deltal [0]*deltal [O] +deltal [1]*deltal[1]+deltal [2]*deltal[2])+2 *sqrt(delta2[0]
*delta2[0]+delta2]1]*delta2[1]+delia?[ 2] *delta2| 2]);

{/f Construcao da malha da superficie
for(linha=0;linha<size_k;linha++)
{
x1=plano[4]+linha*delta2{0];
y1=plano[5]-Hinha¥*delta2[1];
zl=plano[6]+linha*delta2[2];
coluna=0,
coluna_aux=0,
while{coluna<size k*3)
{
if{colunal=0)
coluna_aux=coluna/3;
malha_aux[linha}{coluna)=x1+coluna_aux*deltal{0];
matha_sux[linha][coluna+1]=y1-+coluna_aux*deltai[1];
malha_aux{linha][coluna+2]=z1+coluna_aux*deltal[2];
coluna=coluna+3;
}
}
/f Procura do pontto de contato na malha
aux=0;
linha=0;
coluna=0,

mod1=sqri(deltal {0]*deltal [0]+deltal[1]*deltal [1]+deltal [2]*deltal [2]);
mod2=sqri(delta2[0]*delta2[0]+delta2[ 1] *delta2[1]+delta2[2]*delta2[ 2]),

for(i=0;1<3;i++)
{
deltal [i]=deltal [i]/mod];
delta2{i]=delta2[i]/mod2;
}

while((aux==0) && (linha<size k))

coluna=0;
while ((aw==0) && (coluna<size k*3))

vetorl [0]=pto_contato[0]-malha_auxlinha][colunal;
vetor1[1]=pto_contato[1 J-malha_aux[linha][coluna+i];
vetor][2]=pto_contato[2]-maltha_aux|linha][coluna+2];
prodl~=fabs(prod_escalar(deltal,vetorl,3));



H

83

prod2=fabs(prod_escalar(deita2 vetorl 230

vetor2[0]=pto_contato| 0]-malha_aux[linha][coluna+3];
vetor2{1]=pto_contato[1 J-malha_auxjlinhal{coluna+4];
vetor2[2]=pto_contatof 2]-malha_aw[linha][columa+5];
prod3=fabs(prod_escalar(deital ,vetor2,3));
prod4=fabs(prod__escalar(delta2,vetor2,3));

vetor3{0]=pto_contato[0] -malha_aux{linha+1][colunaj;
vetor3[1T=pto_contato[] J-malha_aux[linha+1}{coluna+1 |
vetor3 [2]=pto_contato[2}-malha_aux[linha+1 J[coluna+2];
prod5=fabs(prod_escalar(deltal svetor3,3Y);
prod6=fabs(pr0d__escalar(delta2,vet0r3,3));

vetord[0]=pto_contato[0]-malha_aux{linha+1 Jicoluna+3];
vetord[1}=pto_contato[1]-malha_aux [linha+1]fcoluna+4];
vetor4[2]'—“pto_oontato[Z]-maJha_alm[IilmM 1][coluna+5];
prod7=fabs(prod_escalar(deltal svetor4,3));
prod8=fabs(prod_escalm(delta2,vetor4,3));

per_cale=prod1+prod2+prod3 *+prod4-+prod 5+prod6+prod7+prods;
dif=fabs(perimetro-per_calc):

if(dif<=0.0001)
aux=1,

if{aux==0)
coluna=coluna+3;

if{aux==0)
{

}

if (aux==1)

Iinha=linha+1;

coluna_aux=coluna/3;
k_ma!riz=ma1riz_k[]inha][coiuna_aux];

forca=k_matriz*penetracao*0.01; // Obervar as unidades utilizadas cm
choque f=1,

ponto_prox[3]=deltal[0];
ponto_prox[4])=deltal[1];
ponto_prox|5]=deital [2];
ponte_prox[6]=delta2[0];
ponto_prox|7]=delta2[1];
ponto_prox|Bj=delta2[2];
ponto_prox[9]=linha;
ponio_prox[10]=coluna_aux;

¢lse

choque f=0,



84

I/ Fullcao momento CaIc ***********lt*ttl!***#*#**************t**#t*ti*ttt*
void momento_cale(float forca, float dirf].float spin, float span, float spun) 11 26/10/2001)
{

float n1,n2,n3; // Relacao de transmissao entre os motores e a5 engrenagens
float mod_xy,dir_z,Fz,Fxy,

float balra_a,bana_b,barra_c,barra_d,barra_e;

float torque_aux;

barra_a=15; {/ geometria do mecanismo medidas em cm (observar poténcia do
motor) Newton ou KGF

barra_b=7.5;

barra_c=18;

barra_d=7.5;

barra_e=15;

nl=n2=3.2; /f Nimero de dentes na coroa=32 N dentes no pinhao=10
n3=l;

mod_xy=sqri(dirf0) *dir[O]+dirf1]*dir]1]);
dir_z=fabs(dir[2]);

if((mod_xy==0) &4& (dir_z==0)

{

Fz={);

Fxy=0;,
}
eise if{(mod_xy!=0) && (dir_z!=0))
{

Fz=forca*sin(dir_z/mod_xy),
Fxy=forca*cos(dir_z/mod_xy);

}
else if ((mod_xy==0) && (dir_z!=0y)
{

Fz=torea,

Fxy=0,
3
else if (mod_xy!=0) && (dir_z==0))
{

Fzr=0;

Fxy=forca;

}

/1 Céleulo dos torques na barra da base (AFz eFxy sfio em N.m, mas a barras sfo em cm
torque_aux=Fz*barra_a*cos(span)*0.01;
torquel=torque aux/nl;

// Céleulo do torque dom motor da haste da ponta (observar como ¢ calculado o spin span e

spun)
if (spin!=0)
{

torque_aux=(F z*(bmra_d"‘barra_cfbana_b)*sin(90*DEGRAD+span—
spin)/sin(spin)¥*0.01;
torque2=torque_aux/n2;
eise if (spin==0)
{

torque_aux=barra_b*Fz*cos(span)*0.01;
torgque2=torque_aux/n2;



}

void motor_control(float torguel, float torque2, float torque3)

{
i

// Céleulo do torque do motor da base (plano xy)

85

torque3=((barra_a*cos(span)+ba1ra_b*cos(spin)*cos(span))"‘ny/n3) *0.01;

float volt] volt2 volt3;
float k_motor, aux_volt,stepl .Step2,step3;
int restol ,resto2,resto3:

# 06/11/2001

/1 os torques sdo calculados em N.m, e devem ser convertidos para Kgfm
/1 1 Kgf= 10 N => deve-se dividir por 10 os torques calculados

k_motor=1;
voltl=-((torquel *100+5.719)/2.706)/2;

voltagem de saida deve ser a metade

voltZ=((torque2*100+7 631 /3. 6442,
volt3=torque3/k_motor/2;

/f Verificar a tabela de bytes
if{volt1>1.8)
{
byte_al=15<<4;
byte_bi=22;
H
else
if{(volti<-1.8)
{
byte al=2<<4;
byte_b1=234;
}
else
{
stepl=fabs(volt1/0.0049);
iffvoltl <0)
byte_bl=256-(int)(stepl/16);
else
byte_bl=(int)(step1/16):
restol=(int)(step! -byte_b1*16);
if(volt] <0)
{
byte_al=(17-resto] y<<d4;
else
{
byte_al=restol <<4;
H
H

if(voit2>1.8)
{

byte_a2=15<<4;

f/ O ganho do Amp OP é 2, portanto a



byte_b2=22;
}
else if{volt2<-1.8)

byte_a2=2<<4;
byte b2=234;

step2=fabs(volt2/0.0049);
if{voli2<0)
byte_b2=256-(int)(step2/16);
else
byte b2=(int)step2/16);
resto2=(int)(step2-byte_bt2*16),
if(volt2<0)
{
byte_a2=(17-resto2)<<4;

else

{
}

byte_a2=resto2<<4;
}
if(volt3>1.8)
{ byte_a3=15<<4;
byte b3=22;

}
else if{volt3<-1.8)

byte_a3=2<<4;
byte_b3=234;

}

else

{
step3=fabs(volt3/0.0049);
if{volt3<0)

byte_b3=256-(int)(step3/16Y;
else

byte_b3=(int)step3/16);
resto3=(int)(step3-byte_b3*16);

if(volt3<0)
{
byte_a3=(17-resto3)<<4,
}
else
{
byte a3=resto3<<4;
h

1

outp (EndBase+8, byte_al);
outp (EndBase+9, byte_bl);
outp (EndBase+10, byte_a2);
ocutp (EndBase+11, byte_b2);
outp (EndBase+12, byte_a3),

86



outp (EndBase+13, byte_b3);

float arredondamento(float num, int casas)
{

float num1,num_trane,resto;

int i divisor:

mum | =num;
divisor=1;
for(i=1;i<=casas;i++)
{
numl=num}*10;
divisor=divisor*10;
}
num_trune=(int}(num1);
resto=numl-num_ftrunc;
if(resto>=0.5)
return (num_frunc+1 Ydivisor:
else
return (num_trunc)divisor;

// **tt*****t***l##******t***&**#t****tttt##t***t-‘!{t*****‘***t******t

// LEZ EE 2242 1Y Funcao de um'ao ha b bl AL Lt L L LTI T T L T p e peptnp
// ’l***1**t****t**#************t****t*-t*t*t-tt***t#ttt*?tttt#*t**#****

/f Funcao anime - Uniao de funcoes da placa, geometricas ¢ graficas *
void anime(void)

spinDisplay();
calculaDirecao();
choqueZ(ponto_ﬁxo,origem_raio,plano,tamanho);
rotacao(dir);
giutPostRedisplay();

}

// ***1!r-t*it**=k#*t*t*t**t******ll!**##**t******i**********##***#*#***t!

// 3o o e e oo s o o oke ]\n)grw““ prm‘:]pal ***&*************t***?***l*********
Y t***t***t*****t‘*t*#**!* ***!ltt4(t******#***#***1**1***#***!t********

int main(int arge, char **argv)

{
float aux_plano,mod_plano;
int i;
int j;

Inicializa();
Calibra();

pleno[0]=0;
plano[1]=0;
plano[2}=1;
plano[3]=0;
plano[4]=0,
plano[5]=0;
plano[6]=0;
plano[7]=MAX_MESH:;
plano[8]=0;

87



plano[9]=0;
planof10]=MAX_MESH,
plano[11]=MAX MESH;
plano[12}=0;
planof[131=0;

planof 14]=MAX_MESH,
plano[15]=0;

matriz_k[0][0]=32200,
matriz_k[0][1]=20100;
matriz_k[0][2}=17700;
matriz_k{O][{3]=16900;
matriz_K[0][4]=16700,
matriz_k[0}[5]=16900;
matriz_k[0][6]=17700;
matriz_k[0][7]=20100;
matriz_k{0][8]=32200;

matriz_k[1]{0]=20100;
mafriz_k[1][1]=8340;
matriz_k[1]§2]=6090,
matriz_k[1][3]=5370;
matriz_k[1]{4]=5180,
matriz_k{1][5}=5370,
matriz_k[13}[6]=6090;
matriz_k[1][7]=8340;,
matriz_k{1][8]=20100;

matriz_k[2][0]=17700;
matriz_k[2}){1]=6090;
matriz_k{2][2]=3910;
matriz_kf2][3}=3230;
matriz_k[2]{4]=3050;
matriz_k{2][5]=3230;
matriz_k[2}[6]=3910;
matriz_k[2][7]=6050;
matriz_k[2][8]=17700;

matriz_k[3][0]=16900;
matriz_k[3][11=5370;
matriz_k{3){2]=3230;
matriz_k[3][3]=2560;
matriz_k[3][4]=2390;
matriz_k[3][5]=2560;,
matriz_k[3][6]=3230;
matriz_k[3]{7]=5370;
matriz_k[3][8]=16900;

matriz_k[4][0)=16700,
matriz_k[4][1]=5180;
matriz_k[4][2]=3050;
matriz_k[4]{3]=2390;
matriz_k[4][4]=2230,
matriz_k[4][5]=2390;
matriz_k[4][6]=3050;
matriz_k[4][7]=5180;
matriz_k[4][8}=16700;



matriz_k[5][0]=16900;
matriz. k[5){1]=5370;
mairiz_k[5][2]=3230,
matriz_k[5][3]=2560;
matriz. k{5][4]=2390;
matriz_k[5][5]=2560;
matriz_k[5][6]=3230;
matriz_k[5}[7]=5370;
matriz_k[5][8]=16900;

matriz_k{6}{0]=17700;
matriz_k[6][1]=6090;
matriz_k[6]{2]=3910,
matriz_kf6][3]=3230;
matriz_k[6][4]}=3050,
matriz_k[6][5]=3230;
matriz_k[6][6]=3910;
matriz_Kk[6][7]=6090;
matriz_k[6][8]=17700;

matriz_k[7][0]=20100;
matriz_k[7][1]=8340,
matriz_k[7][2]=6090;
matriz_k[7][3]=5370;
matriz_kf7][4]=5180;
matriz_k[7][5]=5370;,
matriz_k[7][6]=6090;
matriz_k[7][7]=8340;
matriz_k[7][8]=20100;

matriz_k(8][0}=32200;
matriz_k[8][11=20100;
matriz_k[8][2]=17700;
matriz_k[8][3]=16900;
matriz_k[8][4]=16700;
matriz_k[8][5]=16900;
mairiz_k[8]]6]=17700;
matriz_k[8][7)=20100;
matriz_k[8][8]=32200;

aux_plano=plano[0)*plano[C]+plano[ 1]*plano[ 1 ]+plano| 2] *plano| 2],

mod_plano=sqrt(aux_plano);

for (i=0,i<3:i++)

{

}

ponto_fixo[0)=10,
ponto_fixo[1]=5,
ponto_fixo[2]=3;

plano[i]=plano[i}/mod_planc;

gluthitWindowSize(500, 500),

glutnit(&arge, argv);
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGRB);
glutCreate Window("Simulador Cirfugico™;

init(),

glutReshapeFunc(reshape);

89



glutKeyboardFunc(keyboard);
ghutSpecialF unc(special_keys);
glutDisplayFunc(display);
glutidleFunc(anime);
glutMainLoop();
retum 0;

}

Arquivo Material.h

GL{loat LightAmbient{] = { 0.0f, 0.0, 0.0f, 0.0f }:
GLfloat LightDiffusef] = { 1.0f, 1.0£, 1.0£, 1.0f }-

GLfloat LightSpecular[} = { 1.0f, 1.0f, 1.0f, 1.0f };
GL1loat LightPosition[] = { -2.0f, 2.0f, 2.0f, 1.0 }-

GLfloat mat_amb_amarelo{] = { 0.13, (.13, 0.00, 1.00 };
GLfoat mat_dif amarelo[] = { 0.95, 0.95,0.00, 1.00 };
GLfloat mat_spc_amarelof] = { 0.85, 0.85,0.00, 1.00 };

GLfloat mat_amb_prata{] = { 0.13, 0.13,0.00, 1.00 };
GLfloat mat_dif_prata[] = { 1.00, 1.00, 1.00, 1.00 };
GLfloat mat_spe_prata[] = { 1.00, 1.06, 1.00, 1.00 };

GLfloat mat_amb_vermelho[] = { 0.00, 0.00,0.00,1.00 },
GLfloat mat_dif vermelho[] = { 1.00, 0.00, 0.00, 1.00 };
GLfloat mat_spc_vermelhol] = { 0.00, 0.00, 0.00,1.00 };

GLfloat mat_amb_azulesc|] = {0.10,0.10,1.00, 1.00 };
GLfloat mat_dif azulesc[] = { 0.50, 0.50, 1.00, 1.00 };
GLfloat mat_spc_azulesc{] = { 0.30, 0.30, 0.00, 1.00 };

GLfloat mat_amb_azul[] = { 0.10, 0.10, 1.00, 1.00 }:
GLfloat mat_dif_azul(] = { 0.50, 0.50, 1.00, 1.00 };
GLfloat mat_spc_azull] = { 0.30, 0.30, 0.00, 1.00 }:

GLfloat mat_emission_escuro[] = { 0.00, 0.00, 0.00, 0.00 3;
GLfloat mat_emission_clarof] = { 0.75, 0.75, 0.75, 1.00 };

GI.float mat_shininess[] = { 100.0 };

90



